Omsk, Omsk, Russian Federation
Russian Federation
The subject of this study is an algebraic equation of one form and a system of such equations. The peculiarity of the subject of research is that both the equation and the system of equations admit a cyclographic interpretation in the operational Euclidean space, the dimension of which is one more than the dimension of the subspace of geometric images described by the original equations or system of equations. The examples illustrate the advantages of cyclographic interpretation as the basis of the proposed solutions, namely: it allows you to get analytical, i.e. exact solutions of the complete system of equations of the considered type, regardless of the dimension of the subspace of geometric objects described by the equations of the system; in the geometric version of the solution of the system (the Apollonius and Fermat problems), no application of any transformations (inversions, circular transforms, etc.) is required, unlike many existing methods and approaches; constructive and analytical solutions of the system of equations, mutually complementary, are implemented by available means of graphic CAD and computer algebra. The efficiency of cyclographic interpretation is shown in obtaining an analytical solution to the Fermat problem using a computer algebra system. The solution comes down to determining in the operational space the points of intersection of the straight line and the 3-α-rotation cone with the semi-angle α = 45° at its vertex. The cyclographic images of two intersection points in the operational space are the two desired spheres in the subspace of given spheres. A generalization of the proposed algorithm for the analytical solution of the Fermat problem for n given (n – 2)-spheres in (n – 1)-dimensional subspace. It is shown that in this case the analytical solution of the Fermat problem is reduced to determining the intersection points of the straight line and the (n – 1)-α-cone of rotation in the operational n-dimensional Euclidean space.
system of algebraic equations, geometric modeling, cyclographic interpretation, Apollonius problem, Fermat problem
1. Voloshinov D.V. Algoritm resheniya zadachi Apolloniya na osnove postroeniya ortogonal'nyh okruzhnostej [An algorithm for solving the Apollonius problem based on the construction of orthogonal circles]. GRAFIKON 2016. Trudy 26-J Mezhdunarodnoj nauchnoj konferencii [GRAFIKON 2016. Proceedings of the 26th International Scientific Conference]. 2016, pp. 284-288. (in Russian)
2. Voloshinov D.V. Vizual'no-graficheskoe proektirovanie edinoj konstruktivnoj modeli dlya resheniya analogov zadachi apolloniya s uchetom mnimyh geometricheskih obrazov [Visual-Graphic Design of a Unitary Constructive Model to Solve Analogues For Apollonius Problem Taking into Account Imaginary Geometric Images]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 23-46. (in Russian)
3. Voloshinov D. V. Konstruktivnaya geomterchieskaya model' chetrekhmernogo prostranstva kak osnova dlya resheniya zadach zonirovaniya i pozicionirovaniya pri proektirovanii setej mobil'noj svyazi [Constructive geometric model of four-dimensional space as a basis for solving problems of zoning and positioning in the design mobile network]. Trudy uchebnyh zavedenij svyazi [Proceedings of educational institutions of communication]. 2018, V. 4, I. 4, pp.44-60. (in Russian)
4. Vyshnepol'skij V.I., Sal'kov N.A., Zavarihina E.V. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 1]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 3, pp. 21-35. DOI:10/12737/article_59fa3beb72932.73328568. (in Russian)
5. Vyshnepol'skij V.I., Zavarihina E.V., Dallakyan O.L. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. Chast' 2 [Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 2]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 15-23. DOI:https://doi.org/10.12737/article_5a17f9503d6f40.18070994. (in Russian)
6. Vyshnepol'skij V.I., Kirshanov K.A., Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. Chast' 3 [Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 3]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 4, pp. 3-19. DOI:https://doi.org/10.12737/article_5c21f207bfd6e4.78537377. (in Russian)
7. Girsh A. G. Naglyadnaya mnimaya geometriya [Visual imaginary geometry]. M.: Publishing House "Mask", 2008, 200 p. (in Russian)
8. Ivanov G.S. Konstruktivnyj sposob issledovaniya svojstv parametricheski zadannyh krivyh [A constructive method for studying the properties of parametrically defined curves]. Geometriya i grafika [Geometry and graphics]. 2014, V. 2, I. 3, pp. 3-6. DOIhttps://doi.org/10.12737/12163. (in Russian)
9. Ivanov G.S., Dmitrieva I.M. Nelinejnye formy v inzhenernoj grafike [Nonlinear forms in engineering graphics]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 2, pp. 4-12. DOIhttps://doi.org/10.12737/article_595f295744f77.58727642. (in Russian)
10. Ivanov G.S. Teoreticheskie osnovy nachertatel'noj geometrii [Theoretical Foundations of Descriptive Geometry]. M.: Mashinostroenie, 1998, 158 p. (in Russian)
11. Korotkij V.A., Dubovikva E.P. Zadacha Apolloniya na ekrane komp'yutera [Apollonius task on a computer screen]. Sovershenstvovanie podgotovki uchashchihsya i studentov v oblasti grafiki, konstruirovaniya i dizajna [Improving the training of pupils and students in the field of graphics, construction and design]. 2013, pp. 5-9. (in Russian)
12. Panchuk K. L., Myasoedova T.M., Krysova I.V. Geometricheskaya model' generacii semejstva konturno-parallel'nyh linij dlya avtomatizirovannogo rascheta traektorii rezhushchego instrumenta [Geometric Model for Generation of Contour- Parallel Lines' Family for Cutting Tool's Path Automated Computation]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 3-13. DOI:https://doi.org/10.12737/article_5c92012c51bba1.17153893. (in Russian)
13. Panchuk K. L., Lyashkov A.A., Lyubchinov E.V. Geometricheskaya model' izmereniya psevdodal'nostej v sputnikovyh sistemah opredeleniya mestopolozheniya [Geometric model of pseudo-distance measurement in satellite location systems]. Metrologiya, standartizaciya, kachestvo: teoriya i praktika : materialy Mezhdunar. nauch.-tekhn. konf. [Metrology, standardization, quality: theory and practice: materials Intern. scientific and technical conf.]. 2017, pp. 138-142. (in Russian)
14. Panchuk K. L., Kajgorodceva N. V. Ciklograficheskaya nachertatel'naya geometriya [Cyclographic descriptive geometry]. Omsk: OmGTU Publ., 2017. 232 p. (in Russian)
15. Peklich V. A. Vysshaya nachertatel'naya geometriya [Higher descriptive geometry]. M.: ASV, 2000, 344 p. (in Russian)
16. Sal'kov N.A. Ob odnom graficheskom reshenii zadachi Ferma o kasanii sfer [On a graphical solution to the Fermat problem of tangent spheres]. Priklad. geometriya i inzhener. grafika [Butt. geometry and engineer. graphics]. Kiev: Budivel'nik, 1984, Vol. 37, pp. 97-99. (in Russian)
17. Sal'kov N.A. Prilozhenie svojstv ciklidy Dyupena k izobreteniyam [Application of Dupin Cyclide Properties to Inventions]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 37-43. (in Russian)
18. Sal'kov N.A. Svojstva ciklidy Dyupena i ih primenenie. Chast' 1 [Properties of Dupin cyclides and their application. Part 1]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 16-28. (in Russian)
19. Sal'kov N.A. Svojstva ciklidy Dyupena i ih primenenie. Chast' 2 [Properties of Dupin cyclides and their application. Part 2]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 9-23. (in Russian)
20. Sal'kov N.A. Svojstva ciklidy Dyupena i ih primenenie. Chast' 3 [Properties of Dupin cyclides and their application. Part 3]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 4, pp. 3-15. (in Russian)
21. Sal'kov N.A. Sposoby zadaniya ciklid Dyupena [Methods for specifying Dupin cyclide]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 3, pp. 11-24. (in Russian)
22. Sal'kov N.A. Ciklida Dyupena i ee prilozhenie [Cyclide Dupin and its application]. M.: INFRA-M., 2016, 141 p. (in Russian)
23. Seryogin V.I., Ivanov G.S., Dmitrieva I.M., Murav'yov K.A. Mezhdisciplinarnye svyazi nachertatel'noj geometrii i smezhnyh razdelov vysshej matematiki [Interdisciplinary communications of descriptive geometry and related sections of higher mathematics]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 3-4, pp. 8-12. DOIhttps://doi.org/10.12737/2124. (in Russian)
24. Hejfec A.L. 3D modeli i algoritmy komp'yuternoj parametrizacii pri reshenii zadach konstruktivnoj geometrii (na nekotoryh istoricheskih primerah) [3D models and algorithms of computer parameterization in solving problems of constructive geometry (on some historical examples)]. Vestnik YUUrGU. Seriya «Komp'yuternye tekhnologii, upravlenie, radioelektronika» [Bulletin of SUSU. Series "Computer technology, management, electronics"]. 2016, V. 16, №. 2, pp. 24-42. DOI:https://doi.org/10.14529/ctcr160203. (in Russian)
25. Yaglom I. M. Geometricheskie preobrazovaniya. V 2 t. T.2. Linejnye i krugovye preobrazovaniya [Geometric transformations. In 2 t. T. 2. Linear and circular transformations]. M .: State. Publishing House of Engineering. Theor. letter., 1956, 611 p. (in Russian)
26. Arakelyan A.H. Mobius Group Action on Apollonian Gaskets / A.H. Arakelyan // J. Mathematica Montisnigri. Published by the Department of Mathematics of The University of Montenegro. - 2015. - Vol. XXXII. ¬- P. 81-92.
27. Cho H.C. Clifford algebra, Lorentzian geometry, and rational parametrization of canal surfaces / H.C. Cho, H.I. Choi, S-H. Kwon, D.S. Lee, N-S. Wee // Computer Aided Geometric Design. Elsevier B.V., - 2004. - Vol. 21. - P. 327-339.
28. Held M. On the Computational Geometry of Pocket Machining. Lecture Notes in Computer Science. Vol 500. Berlin. Springer Verlag Publ., 1991. - 184 p.
29. Panchuk K.L. Cyclographic Descriptive Geometry of Space E3 / K.L. Panchuk, N.V. Kaygorodtseva // Abstracts of the 17th International Conference on Geometry and Graphics (ICGG 2016), 4-8 August / Beijing Institute of Technology press. - Beijing, China. 2016. - P. 22-24.
30. Panchuk K.L. Cyclographic Modeling of Surface Forms of Highways [Electronic resource] / K.L. Panchuk, A. S. Niteyskiy, E. V. Lyubchinov // IOP Conf. Series: Materials Science and Engineering. 2017. Vol. 262. DOI:https://doi.org/10.1088/1757-899X/262/1/012108
31. Peternell M. Geometric properties of bisector surfaces / M. Peternell // Graphical Models and Image Processing. - 2000. - 62 p. - P. 202-236.
32. Pottmann H. Applications of Laguerre geometry in CAGD / H. Pottmann, M. Peternell // Comput. Aided Geom. Design. - 1998. - №15. - P. 165-186.
33. Pottmann H. Computational Line Geometry / H. Pottmann, J. Wallner. - Berlin; Heidelberg : Springer Verlag, 2001. - 565 p.
34. Stachel H. Why Shall We also Teach the Theory behind Engineering Graphics / H. Stachel // Technical Report, TU-Wien, Institute for Geometry. - 1996. -No. 35. - 5p.