Russian Federation
In this paper the question related to the use of receptor (voxel) method for geometric modeling to solve practical design problems has been considered. The use of receptor methods is effective in solving a certain class of problems, primarily the problems of automated layout. The complexity of this method’s practical use is due to the fact, that receptor geometric models are never the primary ones. They are formed based on parametric models specified by designer. Receptor models are the internal machine ones. The main problem that prevents the widespread use of the receptor method is the lack of universal methods for converting parametric models into the receptor ones. Available publications show that in solving practical problems various authors have developed their own methods for creating receptor models for objects of "primitives" and "composition of primitives" classes. Therefore, it is extremely urgent to solve the problem of developing a universal method of forming receptor models for objects of complex technical forms. The essence of the proposed method is the transformation of a solid-state model created in a CAD system into a receptor matrix. First in the physical one, in which the solid-state model is discretized into cubes with receptor sizes, and then in the mathematical one — a three-dimensional array with binary codes of zeros and ones. The creation of a physical receptor matrix is carried out by means of the CAD-system itself, allowing diagnose the belonging of a single receptor to a simulated object. The fact of intersection or non-intersection a given position by a single receptor is encoded by "1" and "0" respectively, and this information is transferred to a mathematical receptor model (3-dimensional binary array). This calculation procedure is programmed in the form of a macro, providing a given position of a single receptor and fixing the fact of its intersection with the solid-state model. Have been demonstrated examples for described method’s practical application, and has been carried out CPU time cost estimation for the construction of a physical receptor model depending on the receptor size and object geometric complexity. Actions on data transformation from a solid-state model to a receptor one have been implemented in the form of C# programs.
geometric models, receptor models, automated layout, CAD systems, solid-state models, macros
1. Borovkov A.I., Burdakov S.F., Klyavin O.I. Komp'yuternyj inzhiniring [Computer engineering]. St. Petersburg, Polytechnic. University Publ., 2012. 93 p. (in Russian)
2. Gavrilov V.N. Avtomatizirovannaya komponovka pribornykh otsekov letatel'nykh apparatov [Automated layout of the instrument bays of aircraft]. Moscow, Mashinostroenie Publ., 1988. 136 p. (in Russian)
3. E Vin Tun, Markin L.V. Diskretnye modeli obespecheniya zon obsluzhivaniya v avtomatizirovannoj komponovke letatel'nyh apparatov [Discrete models of providing service areas in the automated layout of aircraft]. Elektronnyj zhurnal "Trudy MAI" [Electronic journal "Proceedings of MAI"]. 2017, I. 96. Available at: http://trudymai.ru/published.php?ID=85901 (accessed 1 July 2019). (in Russian)
4. E Vin Tun, Markin L.V. Obespechenie trebovanij ergonomiki v avtomatizirovannoj komponovke oborudovaniya [Ergonomic requirements in automated equipment layout]. Geometriya i grafika [Geometry and graphics]. 2019, V. 18, I. 3, pp. 69-87. DOI:https://doi.org/10.12737/article_5bc45cbccfbe67.89281424. (in Russian)
5. Zozulevich D.M. Mashinnaya grafika v avtomatizirovannom proektirovanii [Machine graphics in computer-aided design]. Moscow, Mashinostroenie Publ., 1976. 240 p. (in Russian)
6. Klauzevic K. O vojne. Voenno-istoricheskaya kollekciya [About war. Military historical collection]. Moscow, AST Publ., 2019. 320 p. (in Russian)
7. Korn G.V. Metody formirovaniya retseptornykh geometricheskikh modelei i ikh primenenie pri reshenii inzhenerno-geometricheskikh zadach. Kand. Diss [Methods of forming receptor geometric models and their application in solving engineering and geometric problems. Cand. Diss]. Moscow, 1990. 22 p. (in Russian)
8. Kui Min Khan. Matematicheskoye i programmnoye obespecheniye rascheta zatenennosti solnechnykh batarey kosmicheskikh letatelnykh apparatov. Kand. Diss [Mathematical and software for calculation of solar cells shading of spacecraft. Cand. Diss]. Moscow, 2018. 24 p. (in Russian)
9. Kui Min Han, Markin L.V., E Vin Tun, Korn G.V. Diskretnye modeli geometricheskogo modelirovaniya komponovki aviacionnoj tekhniki [Discrete models of geometric modeling of aircraft layout]. Elektronnyj zhurnal "Trudy MAI" [Electronic journal "Proceedings of MAI"]. 2016, I. 86. Available at: http://trudymai.ru/published.php?ID=66465 (accessed 1 July 2019). (in Russian)
10. Krylov A.N. Moi vospominaniya [My memories]. St. Petersburg, Leland Publ., 2016. 512 p. (in Russian)
11. Kuprikov M.Yu., Markin L.V. Geometricheskie aspekty avtomatizirovannoj komponovki letatel'nyh apparatov [Geometric aspects of the automated layout of aircraft]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 3, pp. 69-85. DOI:https://doi.org/10.12737/article_5bc45cbccfbe67.89281424. (in Russian)
12. Malyuh V.N. Vvedenie v sovremennye SAPR [Introduction to Modern CAD]. Moscow, DMK Press Publ., 2016. 192 p. (in Russian)
13. Markin L.V., Kui Min Khan, E Vin Tun, Korn G.V. Retseptornyye modeli v zadachakh avtomatizirovannoy komponovki tekhniki [Receptor models in the problems of automated equipment layout]. Saarbryuken, Lambert Publ., 2016. 110 p. (in Russian)
14. Markin L.V. O putyah sozdaniya geometricheskih modelej avtomatizirovannoj komponovki [On the ways of creating geometric models of automated layout]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 64-69. DOI:https://doi.org/10.12737/10460. (in Russian)
15. Markin L.V. Diskretnye geometricheskie modeli ocenki stepeni zatenennosti v gelioenergetike [Discrete geometric models for estimating the degree of shading in solar energy]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 28-47. DOI:https://doi.org/10.12737/article_5c9202d8d821b0.81468033. (in Russian)
16. Markin L.V. Geometricheskie modeli avtomatizirovannoj komponovki letatel'nyh apparatov [Geometric models of automated layout of aircraft]. Vestnik MAI [MAI Bulletin]. 2015, V. 22, I. 1, pp. 47-56. (in Russian)
17. Nadzharov K.M. Algoritm i programma raschyota massovo-inercionnyh parametrov tel slozhnoj peremennoj formy metodom linejchatogo shestigrannika [Algorithm and program for calculating mass-inertial parameters of bodies of complex variable shape using the line hexagon method]. Moscow, MAI Publ., 1982. 42 p. (in Russian)
18. Nadzharov K.M. Matrichnaya stereometriya i geometriya mass tel peremennoj formy v proektirovanii samolyota. Dokt. Diss [Matrix stereometry and mass geometry of bodies of variable shape in aircraft design. Doct. Diss]. Moscow, 1983. 34 p. (in Russian)
19. N'i N'i Khtun. Razrabotka i issledovanie retseptornykh geometricheskikh modelei telesnoi trassirovki. Kand. Diss [Development and investigation of receptor geometric model of the bodily trace. Cand. Diss]. Moscow, 2014. 26 p. (in Russian)
20. Panchuk K.L., YUrkov V.YU., Volkov V.YA., Kajgorodceva N.V. Elementy matematizacii teoreticheskih osnov nachertatel'noj geometrii [Elements of mathematization of the theoretical foundations of descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 3-15. DOI:https://doi.org/10.12737/10453. (in Russian)
21. Poleshchuk N.N. Programmirovanie dlya AutoCAD 2013-2015 [Programming for AutoCAD 2013-2015]. Moscow, DMK Press Publ., 2015. 462 p. (in Russian)
22. Rotkov S.I., Shishova N.A. Teoretiko - mnozhestvennye operacii nad mnogogrannymi ob"ektami slozhnyh struktur [Theoretical - multiple operations on multifaceted objects of complex structures]. «Avtomatizaciya obrabotki slozhnoj graficheskoj informacii» [Collection "Automation of the processing of complex graphic information"]. Gor'kij, 1987, pp. 50-56. (in Russian)
23. Sal'kov N.A. Parametricheskaya geometriya v geometricheskom modelirovanii [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2014. - T. 2. - № 3. - S. 7-13. DOI:https://doi.org/10.12737/6519.
24. Salkov N.A. Nachertatel'naya geometriya - baza dlya komp'yuternoj grafiki [Descriptive geometry - the basis for computer graphics]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 37-47. DOI:https://doi.org/10.12737/19832. (in Russian)
25. Salkov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [The geometric component of technical innovation]. Geometriya i grafika [Geometry and graphics]. 2018, V. 18, I. 2, pp. 85-94. DOI:https://doi.org/10.12737/article_5b55a5163fa053.0762210. (in Russian)
26. Silantyev D.A., Lotorevich E.A., Pushkarev S.A., Tolok A.V. Voksel'no-matematicheskoe modelirovanie pri reshenii zadach opredeleniya ploshchadi dlya poverhnostej detalej [Voxel-mathematical modeling in solving problems of determining the area for the surfaces of parts]. Informatsionnyye tekhnologii v proyektirovanii i proizvodstve [Information technologies in design and production]. 2013, I. 3, pp. 29-33. (in Russian)
27. Situ Lin., N'i N'i Khtun, Markin L.V. Razrabotka metodov i geometricheskih modelej analiza nezapolnennyh prostranstv v zadachah razmeshcheniya. Kand. Diss [Receptor geometric models in the problems of automated layout of the technical compartment of a light aircraft. Cand. Diss]. Moscow: 2011, p. 24. (in Russian)
28. Situ L. Receptornye geometricheskie modeli v zadachah avtomatizirovannoj komponovki tekhnicheskogo otseka legkogo samoleta [Receptor geometric models in the tasks of the automated layout of the technical compartment of a light aircraft]. Elektronnyj zhurnal \"Trudy MAI\" [Electronic journal "Transactions of Moscow Aviation Institute"]. Moscow, MAI Publ., 2011, I. 47. Available at: http://trudymai.ru/published.php?ID=26825. (in Russian)
29. Teverovskij L.V. Sovremennyj stanok s ChPU i CAD/CAM-sistema [Modern CNC machine and CAD / CAM system]. Moscow: DMK Press Publ., 2018. 280 p. (in Russian)
30. Tolok A.V. Funkcional'no-voksel'nyj metod v komp'yuternom modelirovanii [Functional-voxel method in computer modeling]. Moscow: FIZMATLIT Publ., 2016. 112 p. (in Russian)
31. Htun N.N. Issledovanie algoritmov ispol'zovaniya receptornyh geometricheskih modelej v zadachah telesnoj trassirovki aviacionnoj tekhniki [The study of the algorithms for using receptor geometric models in the problems of body tracing of aircraft]. Elektronnyj zhurnal \"Trudy MAI\" [Electronic journal "Transactions of Moscow Aviation Institute"]. Moscow, MAI Publ., 2013, I. 69. Available at: http:// http://trudymai.ru/published.php? ID= 43123. (in Russian)
32. Salkov N.A. Parametricheskaya geometriya v geometricheskom modelirovanii [Parametric geometry in geometric modeling]. Geometriya i grafika [Geometry and graphics]. 2014, V. 2, I. 3, pp. 7-13. DOI:https://doi.org/10.12737/6519. (in Russian)