ALGORITHMIC COMPLEX FOR SOLVING OF PROBLEMS WITH QUADRICS USING IMAGINARY GEOMETRIC IMAGES
Abstract and keywords
Abstract (English):
The paper is devoted to the consideration of a number of issues related to the creation of an algorithmic complex designed to solve positional and metric problems with quadrics on a projection model . A feature of the complex is the active use of geometric schemes and algorithms involving imaginary geometric images. In the paper has been presented a detailed description of constructive geometric algorithms for constructing of conics, quadrics and associated geometric images in a system of constructive geometric modeling – Simplex. All the discussed algorithms are available for independent repetition by the reader. In the paper have been presented and implemented algorithms for constructing conic from a point, a polar, and three points; constructing conic from two pairs of complex conjugate points and one real point; determination of a point on a quadric’s surface; setting a quadric by nine points in three-dimensional space. A new alternative frame of the quadric has been considered, based on which have been solved problems of constructing a tangent and a normal to the quadric, finding an intersection line of an arbitrary plane with the quadric, and performing polar and inverse transformations with respect to the quadric. Have been proposed algorithms for constructing an autopolar tetrahedron with respect to the quadric, and for constructing a conic from an autopolar triangle and two points. Have been considered problems of determining a collinear transformation in three-dimensional space and control the quadric through it. The implementation of the algorithms considered in the paper allowed conclude that there is an urgent need to develop tools for modeling imaginary conics, without which the complex of solving problems with quadrics cannot be taken for the complete one.

Keywords:
scientific visualization, constructive geometric modeling, geometric experiment, projective geometry, quadric, imaginary geometric images
References

1. Akopyan A.V., Zaslavsky A.A. Geometricheskie svojstva krivyh vtorogo porjadka [Geometric properties of second-order curves]. Moscow, MCNMO Publ., 2007. 136 p. (in Russian)

2. Bakelman I.Ya. Inversija [Inversion]. Moscow, Nauka Publ., 1966. 79 p. (in Russian)

3. Belozerov G.V. Topologicheskaya klassifikaciya integriruemyh geodezicheskih billiardov na kvadrikah v trekhmernom evklidovom prostranstve [Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space]. Voronezhskaya zimnyaya matematicheskaya shkola S.G. Krejna - 2020, materialy Mezhdunarodnoj konferencii [Voronezh Winter Mathematical School SG Crane - 2020, proceedings of the International Conference]. 2020, pp. 60-62. (in Russian)

4. Valkov K.I. Vvedenie v teoriju modelirovanija [Introduction to modeling theory]. Leningrad, LISI Publ., 1974. 152 p. (in Russian)

5. Vertinskaya N.D. Modelirovanie poverhnostej v metode dvuh izobrazhenij v nachertatel'noj geometrii [Surface modeling in the method of two images in descriptive geometry]. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij [International Journal of Applied and Basic Research]. 2016, I. 1-3, pp. 334-338. (in Russian)

6. Vertinskaya N.D. Resheniya zadach v metodah modelirovaniya i konstruirovaniya nachertatel'noj geometrii [Problem solving in methods of modeling and designing descriptive geometry]. Nauchnoe obozrenie. Tekhnicheskie nauki [Scientific Review. Technical science]. 2016, I. 3, pp. 5-25. (in Russian)

7. Vertinskaya N.D. Teoriya nelinejnyh otobrazhenij mnogomernyh monoidal'nyh poverhnostej i ee prilozheniya. Dokt. Diss [The theory of nonlinear mappings of multidimensional monoidal surfaces and its applications. Doct. Diss]. Irkutsk, 2006. 377 p. (in Russian)

8. Volkov V.YA. Kurs nachertatel'noj geometrii na osnove geometricheskogo modelirovaniya [Descriptive Geometry Course Based on Geometric Modeling]. Omsk, SibADI Publ., 2010. 253 p. (in Russian)

9. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie. Teorija, praktika, avtomatizacija [Constructive geometric modeling. Theory, Practice, Automation]. Saarbrücken: Lambert Academic Publ., 2010. 355 p. (in Russian)

10. Volberg A.O. Osnovnye idei proektivnoj geometrii [The basic ideas of projective geometry]. Moscow-Leningrad Uchpedgiz Publ., 1949. 188 p. (in Russian)

11. Vorozhishchev YA.S. Perspektiva kak chastnyj sluchaj trekhmernoj kollineacii i osnovnaya teorema perspektivy [Perspective as a special case of three-dimensional collineation and the main theorem of perspective]. Nauchnye trudy [Scientific proceedings]. 2015, I. 34, pp. 88-98. (in Russian)

12. Hirsch A.G. Zadanie i postroenie kvadriki [Definition and constructing a quadric]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 2, pp. 39-44. DOI: 10.12737. (in Russian)

13. Hirsh A.G. Nagljadnaja mnimaja geometrija [Visual imaginary geometry]. Moscow, Maska Publ., 2008. 216 p. (in Russian)

14. Hirsch A.G. Novye zadachi nachertatel'noj geometrii [New Descriptive Geometry Problems]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 4, pp. 18-33. DOI:https://doi.org/10.12737/2308-4898-2020-18-33. (in Russian)

15. Hirsch A.G., Korotky V.A. Graficheskie algoritmy rekonstrukcii krivoj vtorogo poryadka, zadannoj mnimymi elementami [Graphic Algorithms for Reconstructing a Second Order Curve Given by Imaginary Elements]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 19-30. DOI:https://doi.org/10.12737/22840. (in Russian)

16. Glagolev N.A. Proektivnaja geometrija [Projective Geometry]. Moscow, Vysshaya shkola Publ., 1963. 342 p. (in Russian)

17. Grafskij O.A. Vvedenie mnimyh elementov v nachertatel'nuyu geometriyu [The introduction of imaginary elements in descriptive geometry]. Khabarovsk, GOU VPO "Dalnevost. State university of communication lines. Ministry of Railways of Russia" Publ., 2004. 168 p. (in Russian)

18. Grafskij O.A., Li V.G. O vzaimnom peresechenii kvadrik s mnimym prodolzheniem [On the mutual intersection of quadrics with imaginary continuation]. Izvestiya TRTU [News of TRTU]. 2004, I. 8 (43), pp. 249-253. (in Russian)

19. Doskolovich L.L., Moiseev M.A., Borisova K.V. Raschet zerkala dlya formirovaniya zadannogo nepreryvnogo raspredeleniya osveshchennosti na osnove metoda soglasovannyh kvadrik [Calculation of the mirror for the formation of a given continuous distribution of illumination based on the method of consistent quadrics]. Komp'yuternaya optika [Computer optics]. 2015, V. 39, I. 3, pp. 347-356. (in Russian)

20. Egorov N.A., Bubyakin I.V., Popov O.N. Geometricheskie obrazy poverhnostej vrashcheniya v chetyrekhmernom prostranstve [Geometric images of surfaces of revolution in four-dimensional space]. XVII i XVIII Lavrent'evskie chteniya sbornik statej nauchnoj konferencii shkol'nikov, studentov, aspirantov i molodyh uchenyh Respubliki Saha (YAkutiya) [Proc. of XVII and XVIII Lavrentiev readings collection of articles of a scientific conference for schoolchildren, students, graduate students and young scientists of the Republic of Sakha (Yakutia)]. 2015, pp. 15-21. (in Russian)

21. Zhizhilkin I.D. Inversija [Inversion]. Moscow, MTSNMO Publ., 2009, 72 p. (in Russian)

22. Ivanov G.S., Dmitrieva I.M. O zadachah nachertatel'noj geometrii s mnimymi resheniyami [On descriptive geometry problems with imaginary solutions]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 3-8. DOI:https://doi.org/10.12737/12163. (in Russian)

23. Ivanov G.S. Perspektivy nachertatel'noj geometrii kak uchebnoj discipliny [On the prospects of descriptive geometry as an educational discipline]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 26-27. DOI:https://doi.org/10.12737/6518. (in Russian)

24. Ignat'ev YU.G., Samigullina A.R. Programmnoe obespechenie teorii krivyh vtorogo poryadka v pakete komp'yuternoj matematiki [Applied Mathematics and Fundamental Computer Science]. Filologiya i kul'tura [Philology and Culture]. 2011, I. 4 (26), pp. 24-29. (in Russian)

25. Korotkij V.A. Graficheskie algoritmy postroeniya kvadriki, zadannoj devyat'yu tochkami [Graphic algorithms for constructing a quadric given by nine points]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 2, pp. 3-12. DOI:https://doi.org/10.12737/article_5d2c1502670779.58031440. (in Russian)

26. Korotkij V.A. Graficheskie algoritmy postroeniya kvadriki, zadannoj devyat'yu tochkami [Computer visualization of a second-order curve passing through imaginary points and touching imaginary lines]. Nauchnaya vizualizaciya [Scientific visualization]. 2018, V. 10, I. 1, pp. 56-68. DOI:https://doi.org/10.26583/sv.10.1.04. (in Russian)

27. Korotkij V.A. Konicheskie secheniya v komp'yuternoj grafike [Conical sections in computer graphics]. Materialy 70-j nauchnoj konferencii Nauka YUUrGU. YUzhno-Ural'skij gosudarstven-nyj universitet [Proc. of the 70th scientific conference Science SUSU. South Ural State University]. 2018, pp. 105-109. (in Russian)

28. Korotkij V.A. Mnimye linejnye elementy v algebre, geometrii i komp'yuternoj grafike [Imaginary linear elements in algebra, geometry and computer graphics]. Prikladnaya matematika i fundamental'naya informatika [Applied Mathematics and Fundamental Computer Science]. 2019, V. 6, I. 2, pp. 34-48. DOI:https://doi.org/10.25206/2311-4908-2019-6-2-34-48. (in Russian)

29. Korotkij V.A. Soprikosnovenie konicheskih sechenij [Contact of conic sections]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 36-45. DOI:https://doi.org/10.12737/21532. (in Russian)

30. Korotkij V.A. Central'noe proecirovanie dvuh komplanarnyh konik v dve okruzhnosti [Central projection of two coplanar conics in two circles]. Problemy kachestva graficheskoj podgotovki. Materialy IV mezhdunarodnoj Internet-konferencii. Fevral' - mart 2014 [Proc. of the IV international Internet conference "Problems of the quality of graphic education" February - March 2014], Perm, 2014. (in Russian)

31. Korotkij V.A., Hmarova L.I. Universal computer conograph. Trudy 26-j Mezhdunar. nauch. konferencii; 19-23 sentyabrya 2016 [Proc. of the 26th Int. scientific Conferences September 19-23, 2016. - N. Novgorod. 2016], N. Novgorod, 2016, pp. 347-351. (in Russian)

32. Kosyakova E.YU. Universal'nyj komp'yuternyj konikograf [On the issue of modeling compartments of two-dimensional contours with a predetermined order of contact]. Modelirovanie, optimizaciya i informacionnye tekhnologii [Modeling, optimization and information technology]. 2018, V. 6, I. 1 (20), pp. 53-60. (in Russian)

33. Leonova L.M., Fedorov A.V. Sechenie kvadriki kak otobrazhenie ego na ploskost' proekcij [Section of a quadric as its mapping onto the plane of projections] Informacionnye tekhnologii v nauke i proizvodstve Materialy Vserossijskoj molodezhnoj nauchno-tekhnicheskoj konferencii [Proc. of the All-Russian Youth Scientific and Technical Conference «Information Technologies in Science and Production»].2015, pp. 228-232. (in Russian)

34. Moskovcev M.N., Chizhik M.A. Gruppovaya organizaciya tochechnyh eksperimental'nyh dannyh na mnogomernyh chertezhah dlya optimizacionnoj obrabotki [Group organization of point experimental data in multidimensional drawings for optimization processing]. Materialy Mezhdunarodnogo kongressa FGBOU VPO «SibADI» Arhitektura. Stroi-tel'stvo. Transport. Tekhnologii. Innovacii [Proc. of the International Congress FSBEI HPE "SibADI" Architecture. Building. Transport. Technologies. Innovation], 2013, pp. 137-140. (in Russian)

35. Panchuk K.L., Volkov V.YA. Konstruktivno-metricheskoe modelirovanie linejchatogo prostranstva [Structural and metric modeling of ruled space]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universitetata [Bulletin of the Kuzbass State Technical University]. 2007, I. 6 (64), pp. 55-58. (in Russian)

36. Peklich V.A. Mnimaya nachertatel'naya geometriya [Imaginary descriptive geometry]. Moscow, Association of construction universities Publ., 2007, 104 p. (in Russian)

37. Polezhaev YU.O., Fatkullina A.A., Borisova A.YU. Geometricheskie modeli sopryazhenij kvadrik na fragmentah arhitekturnyh ob"ektov [Geometric models of conjugations of quadrics on fragments of architectural objects]. Vestnik MGSU [Bulletin of MGSU]. 2012, I. 9, pp. 18-23. (in Russian)

38. Prokof'eva I.V., Demidov S.G. Nachertatel'naya geometriya - trekhmernaya i mnogomernaya [Descriptive geometry - three-dimensional and multidimensional]. Inzhenernyj vestnik [Engineering bulletin]. 2016, I. 3, p. 5. (in Russian)

39. Saharova N.A., Ponomarchuk YU.V., Grafskij O.A. Sravnitelnyj-konstruktivnyj-i-analiticheskij-analiz-transformacii-kvadrik [Comparative constructive and analytical analysis of quadric transformation]. Sovremennaya nauka: novye podhody i aktual'nye issledovaniya Materialy Mezhduna-rodnoj (zaochnoj) nauchno-prakticheskoj konferencii [Modern science: new approaches and relevant research Materials of the International (correspondence) scientific-practical conference]. 2018, pp. 41-45. (in Russian)

40. Filippov P.V. Nachertatel'naja geometrija mnogomernogo prostranstva i ee prilozhenija [Descriptive geometry of multidimensional space and its applications]. Moscow, LENAND Publ., 2016, 282 p. (in Russian)

41. Chetverukhin N.F. Proektivnaja geometrija [Projective geometry]. Moscow, Prosveshenie Publ., 1953, 360 p. (in Russian)

42. Chizhik M.A., Moskovcev M.N., Fedotova I.V. Avtomatizirovannaya-sistema-podderzhki-geometricheskogo-modelirovaniya-tekhnologij-legkoj-promyshlennosti [Automated support system for geometric modeling of textile industry technologies]. Trudy 26-j Mezhdunarodnoj nauchnoj konferencii GRAFIKON 2016 [Proceedings of the 26th International Scientific Conference GRAPHICON 2016]. 2016, pp. 513-517. (in Russian)

Login or Create
* Forgot password?