Chelyabinsk, Russian Federation
Russian Federation
Russian Federation
Russian Federation
VAC 14.02.2004 Медицина труда
VAC 14.03.2000 Медико-биологические науки
UDK 61 Медицина. Охрана здоровья
GRNTI 76.01 Общие вопросы медицины и здравоохранения
GRNTI 76.03 Медико-биологические дисциплины
GRNTI 76.29 Клиническая медицина
OKSO 14.02.02 Радиационная безопасность
OKSO 31.07.01 Клиническая медицина
OKSO 32.08.09 Радиационная гигиена
BBK 53 Клиническая медицина в целом
BBK 54 Клиническая медицина
BBK 56 Клиническая медицина
BBK 57 Клиническая медицина
BBK 58 Прикладные отрасли медицины
TBK 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
TBK 5734 Медицинская радиология и рентгенология
TBK 5778 Прикладная медицина
TBK 5779 Прочие отрасли медицины
BISAC MED080000 Radiology, Radiotherapy & Nuclear Medicine
Purpose: To assess cataract type specific risks in a cohort of workers occupationally exposed to ionizing radiation over prolonged periods. Material and methods: The present retrospective cohort study included 22,377 workers first employed at a nuclear production facility in 1948–1982 and followed up till the end of 2008. By the end of the follow-up period in the study worker cohort 3123 cases of cortical cataract, 1239 cases of posterior subcapsular cataract (PSC) and 2033 cases of nuclear cataracts were registered over 486,245, 489,162, 492,004 person-years of follow-up, respectively. Results: The incidence of PSC, cortical and nuclear cataracts was significantly linearly associated with the cumulative radiation dose. The excess relative risk per unit dose of external gamma-ray exposure (ERR/Sv) was 0.91 (95 % CI: 0.67–1.20) for PSC, 0.63 (95 % CI: 0.49–0.76) for cortical cataracts and 0.47 (95 % CI: 0.35–0.60) for nuclear cataracts. Exclusion of an adjustment for neutron dose and inclusion of additional adjustments for body mass index and smoking index reduced ERRs/Sv for all types of cataracts. However, an additional adjustment for glaucoma increased the incidence risks of cortical and nuclear cataracts just modestly (but not for PSC). Inclusion of an adjustment for diabetes mellitus reduced the ERR/Sv of external gamma-ray exposure only for PSC incidence. Increased incidence risks of all cataract types were observed in both males and females of the study cohort, but ERR/Sv was significantly higher in females (p < 0.001), especially for PSC. Conclusion: The incidence of various types of cataracts in the cohort of workers occupationally chronically exposed to ionizing radiation was associated with the cumulative dose of external gamma-ray exposure.
ionizing radiation, chronic exposure, Mayak PA workers, posterior subcapsular cataract, cortical cataract, nuclear cataract, sex differences
1. Tsyb AF, Abakushina EV, Abakushin DN, Romanko YuS. Radiation as risk factor of Development the Radiation-induced Cataract (In Russ.).
2. Tukov AR, Shafransky IL, Prohorova ON, Ziyatdinov MN. The incidence of cataracts and the radiation risk of their occurrence in liquidators of the Chernobyl accident, workers in the nuclear industry. Radiation and Risk. 2019;28(1):37-46. (In Russ.).
3. Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, et al. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutat Res. 2016;770(Pt B):238-61. DOI:https://doi.org/10.1016/j.mrrev.2016.07.010.
4. ICRP Publication 118. ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context. Ann. ICRP. 2012;41(1/2):322.
5. Mikryukova LD, Krestinina L Yu, Epiphanova SB. A study of layered lens change in the process of cataract formation in persons exposed to radiation as a result of radiation accidents in the Southern Urals. Rdiation Hygiene. 2018;11(4):51-63. (In Russ.).
6. Hamada N, Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J Radiat Res. 2014;55(4):629-40. DOI:https://doi.org/10.1093/jrr/rru019.
7. Shore RE. Radiation and cataract risk: Impact of recent epidemiologic studies on ICRP judgments. Mutat Res. 2016;770(Pt B):231-7. DOI:https://doi.org/10.1016/j.mrrev.2016.06.006.
8. Minamoto A, Taniguchi H, Yoshitani N, Mukai S, Yokoyama T, Kumagami T, et al. Cataract in atomic bomb survivors. Int J Radiat Biol. 2004;80(5):339-45. DOI:https://doi.org/10.1080/09553000410001680332.
9. Neriishi K, Nakashima E, Minamoto A, Fujiwara S, Akahoshi M, Mishima HK, et al. Postoperative cataract cases among atomic bomb survivors, radiation dose response and threshold. Radiat Res. 2007;168(4):404-8. DOI:https://doi.org/10.1667/RR0928.1.
10. NCRP. Guidance on Radiation Dose Limits for the Lens of the Eye. NCRP Commentary No. 26. Bethesda, MD: National Council on Radiation Protection and Measurements. 2016.
11. Azizova TV, Grigoryeva ES, Haylock RGE, Pikulina MV, Moseeva MB. Ischeamic heart disease incidence and mortality in an extended cohort of Mayak workers first employed in 1948-1982. Br J Radiol. 2015;88(1054):20150169. DOI:https://doi.org/10.1259/bjr.20150169.
12. Azizova TV, Haylock RGE, Moseeva MB, Bannikova MV, Grigoryeva ES. Cerebrovascular diseases incidence and mortality in an extended Mayak worker cohort 1948-1982. Radiat Res. 2014;182(5):529-44. DOI:https://doi.org/10.1667/RR13680.1.
13. Azizova TV, Zhuntova GV, Haylock RGE, Grigoryeva ES, Moseeva MB, Pikulina MV, et al. Chronic bronchitis in the extended Mayak worker cohort: workers first employed between 1948-1982. Occupational and Environmental Medicine. 2017;74(2):105-13. DOI:https://doi.org/10.1136/oemed-2015-103283.
14. Azizova TV, Briks KV, Bannikova MV, Grigorieva ES. Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods. Hypertension. 2019;73(6):1174-84. DOI:https://doi.org/10.1161/HYPERTENSIONAHA.118.11719.
15. Azizova TV, Bannikova MV, Grigoryeva ES, Rybkiba VL, Hamada N. Occupational exposure to chronic ionizing radiation increases risk of Parkinson’s disease incidence in Russian Mayak workers. Int J Epidemiol. 2020;49(2):435-47. DOI:https://doi.org/10.1093/ije/dyz230.
16. Hill B. The environment and disease: association or causation? J Roy Soc Med. 2015;108(1):32-7. DOI:https://doi.org/10.1177/0141076814562718.
17. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2017 Report to the General Assembly, with Scientific Annexes. New York: United Nations. 2018. 194 p.
18. Azizova TV, Bragin EV, Hamada N, Bannikova MV. Risk of Cataract Incidence in a Cohort of Mayak PA Workers following Chronic Occupational Radiation Exposure. PLoS ONE. 2016;11(10):e0164357. DOI:https://doi.org/10.1371/journal.pone.0164357.
19. Guide to the international statistical classification of diseases, injuries and causes of death. 9 Revision. 1975. Geneva: (In Russ.).
20. Azizova TV, Teplyakov II, Grigorieva EU, Vlasenko EV, Sumina MV, Druzhinina MB, etc. Medical dosimetric database «Clinic» of employees OF PA «Mayak» and their families. Medical Radiology and Radiation Safety. 2009;54(5):26-35. (In Russ.).
21. Vasilenko EK, Scherpelz RI, Gorelov MV, Stram DJ, Smetanin MY. External dosimetry reconstruction for Mayak workers. 2010. AAHP Special Session Health Physics Society Annual Meeting. Available from: http://www.hpsl.org/aahp/public/AAHP_Special_Session/ 2010_Salt_Lake_City/pm-1.pdf
22. Khokhryakov VV, Khokhryakov VF, Suslova KG, Vostrotin VV, Vvedensky VE, Sokolova AB, et al. Mayak Worker Dosimetry System 2008 (MWDS-2008): Assessment of internal alpha-dose from measurement results of plutonium activity in urine. Health Phys. 2013;104(4):366-78. DOI:https://doi.org/10.1097/HP.0b013e31827dbf60.
23. ICRP Publication 103. 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP. 2007;37(2-4):332.
24. Preston D, Lubin J, Pierce D, McConney M. Epicure Users Guide. Seattle, WA: Hirosoft. 1993.
25. Komarovskikh EN, Polapina AA. Age-Related Cataract: Epidemiology, Risk Factors, Cataractogenesis Aspects (Problem Statement). Medicus. 2016(2):66-7. (In Russ.).
26. Klein BE, Klein R, Linton KL. Prevalence of age-related lens opacities in 3669 a population. The Beaver Dam eye study. Ophthalmol. 1992;99(4):546-52. DOI:https://doi.org/10.1016/s0161-6420(92)31934-7.
27. Vavvas D, Azar NF, Azar DT. Mechanisms of disease: Cataracts. Ophthalmol. Clin. North Am. 2002;15(1):49-60. DOI:https://doi.org/10.1016/s0896-1549(01)00015-3.
28. Henderson MA, Valluri S, DesRosiers C, Lopez JT, Batuello CN, Caperell-Grant A, et al. Effect of gender on radiation-induced cataractogenesis. Radiat Res. 2009;172(1):129-33. DOI:https://doi.org/10.1667/RR1589.1.
29. Henderson MA, Valluri S, Garrett J, Lopez J.T, Caperell-Grant A, Mendonca MS, et al. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation. Radiat Res. 2010;173(2):191-6. DOI:https://doi.org/10.1667/RR1917.1.
30. Dynlacht JR. The role of age, sex and steroid sex hormones in radiation cataractogenesis. Radiat Res. 2013;180(6):559-66. DOI:https://doi.org/10.1667/RR13549.1.
31. Belyy YuA, Tereshchenko AV, Romanko Yu S, Abakushina EV, Gretchaninov VB. The Molecular Mechanisms Involved in Radiation-Induced Cataract Formation. Cataral and Refraction Surgery. 2014;14(4):4-9. (In Russ.).
32. Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence. Int J Radiat Biol. 2017;93(10):1024-34. DOI:https://doi.org/10.1080/09553002.2016.1266407.
33. Dynlacht JR, Vallury S, Garrett J, Mendonca MS, Lopez JT, Caperell-Grant A, et al. Age and hormonal status as determinants of cataractogenesis induced by ionizing radiation. I. Densely ionizing (high-LET) radiation. Radiat Res. 2011;175(1):37-43. DOI:https://doi.org/10.1667/RR2319.1.
34. Dynlacht JR, Tyree C, Valluri S, DesRosiers C, Caperell-Grant A, Mendonca MS, et al. Effect of estrogen on radiation-induced cataractogenesis. Radiat Res. 2006;165(1):9-15. DOI:https://doi.org/10.1667/rr3481.1.
35. Dynlacht JR, Valluri S, Lopez J, Greer F, DesRosiers C, Caperell-Grant A, et al. Estrogen protects against radiation-induced cataractogenesis. Radiat Res. 2008;170(6):758-64. DOI:https://doi.org/10.1667/RR1416.1.
36. Rahman A, Yahya K, Shaikh A, Fasih U, Zuberi BF. Risk factors associated with pre-senile cataract. Pak J Med Sci. 2011(27):145-8.
37. Nakashima E, Neriishi K, Minamoto A. A reanalysis of atomic-bomb cataract data, 2000-2002, a threshold analysis. Health Phys. 2006;90(2):154-60. DOI:https://doi.org/10.1097/01.hp.0000175442.03596.63.
38. Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, et al. NASA study 3288 of cataracts in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009;172(1):10-20. DOI:https://doi.org/10.1667/RR1580.1.
39. Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, et al. Cataracts among Chernobyl clean-up workers, implications regarding permissible eye exposures. Radiat Res. 2007;167(2):233-43. DOI:https://doi.org/10.1667/rr0298.1.
40. Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Amarsson A, Jonasson F. Cosmic radiation increases the risk of nuclear cataract in 3984 airline pilots: A population-based case-control study. Arch Ophthalmol. 2005;123(8):1102-3985. DOI:https://doi.org/10.1001/archopht.123.8.1102.
41. Hamada N, Sato T. Cataractogenesis following high-LET radiation exposure. Mutat Res. 2016;770(Pt B):262-91. DOI:https://doi.org/10.1016/j.mrrev.2016.08.005.
42. Azizova TV, Hamada N, Grigoryeva ES, Bragin EV. Risk of various types of cataracts in a cohort of Mayak workers following chronic occupational exposure to ionizing radiation. Eur J Epidemiol. 2018;33(12):1193-204. DOI: 10/1007/s10654-018-0450-4.
43. Hamada N, Azizova T, Little M. An update on effects of ionizing radiation exposure on the eye. Br J Radiol. 2020;93:20190829. DOI:https://doi.org/10.1259/bjr.20190829.