EXPERIENCE WITH THE INTRODUCTION OF SAFT TESTING IN VOLUME PRODUCTION OF LARGE FORGED PARTS
Abstract and keywords
Abstract (English):
Large rotor forged parts, which are usually one of the most critical components in land-based turbines and generators for power generation, require a complex volumetric test for a sufficient service life. This is usually performed manually or automatically with ultrasound. New requirements, designs and materials require more sensitive testing. This can be achieved by SAFT, also called ultrasound computer tomography. SAFT is based on the Synthetic Aperture Radar (SAR) and has been further developed by several universities. The introduction of SAFT in the volume production of large forged parts was achieved by the introduction of the quantitative SAFT developed by Siemens, also called AVG or DGS-SAFT, which allows an evaluation of each voxel in units of a replacement reflector, and by an acceleration that allows the reconstruction of the complete volume of a large forged component, which could be obtained when the SAFT test was introduced into volume production. The challenges for level 2/3 reviewers are discussed, such as volume-corrected display of results, handling of large amounts of data, focusing of displays, amplitude representation in units of a replacement reflector and handling of the software. Furthermore, it is shown how displays are represented by SAFT, how the detection limit can be determined in the case of quantitative SAFT, and which artifacts can occur during series testing with SAFT.

Keywords:
ultrasonic testing, quantitative SAFT, large rotor forged parts, implementation experience
References

1. Vrana J., Zimmer A., Bailey K. et al. Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings over the Past Decades. - AIP Conf. Proc. 2010. V. 1211. No. 1. P. 1623-1630.

2. Zimmer A., Vrana J., Meiser J., Blaes N. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades.- Ibid. P. 1631-1638.

3. Vrana J., Zimmer A., Lohmann H.-P., Heinrich W. Evolution of the Ultrasonic Inspection over the Past Decades on the Example of Heavy Rotor Forgings. In: 19th WCNDTesting: Munich, Germany, 2016, Th-2-A-5.

4. Schinn R. Erfahrungen mit der Ultraschallprüfung bei der Abnahme von Rotoren für Turbosätze. - Metall. 1953. Bd 7. S. 502-506.

5. VGB Standard / Prüfung von großen Schmiede- und Gussstücken für Dampf- und Gasturbosätze. - Essen, Germany: VGB PowerTech, 2015.

6. Vrana J., Kadau K., Amann C. Smart Data Analysis of the Results of Ultrasonic Inspections for Probabilistic Fracture Mechanics. - VGB Journal. 2018. V. 7. P. 38-42.

7. Vrana J. Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings. - In: 11th ECNDT. - Prague, Czech Republic, 2014.

8. Richtlinie zur Festlegung des Prüfrasters bei der automatisierten Ultraschallprüfung großer Schmiedestücke. - Berlin, Germany: DGZfP, 2014.

9. Vrana J., Schörner K., Mooshofer H. et al. Ultrasonic Computed Tomography - Pushing the Boundaries of the Ultrasonic Inspection of Forgings. - In: 20th Internat. Forgemaster Conf. - Graz, Austria, 2017.

10. Vrana J., Schörner K., Mooshofer H. et al. Ultrasonic Computed Tomography - Pushing the Boundaries of the Ultrasonic Inspection of Forgings. - Steel Res. Internat. 2018. V. 89, 1700448.

11. Müller B. Transparent Turbines. - Pictures of the Future. 2016.

12. Steger V. The Transparent Shaft. Siemens YouTube Channel, 2016.

13. Boehm R., Fendt K., Heinrich W., Mooshofer H. Verfahren und Vorrichtung zur Defektgrößenbewertung / Patent DE102013211616, 2014.

14. Mooshofer H., Boehm R., Heinrich W. et al. Amplitudenbasierte Fehlergrößenbewertung mit SAFT: Auf dem Weg von der bildlichen Darstellung zum Messverfahren. - Koblenz: DGZfP Jahrestagung, Di.1.C.3,2017.

15. Mooshofer H., Boehm R., Heinrich W. et al. Amplitude-based Defect Sizing of SAFT-Results - From Imaging to Quantitative Measurement. - In:12th ECNDT. - Gothenburg, Sweden, 2018.

16. Ultraschallprüfung von Schmiedestücken aus Stahl mit höheren Anforderungen, insbesondere für Bauteile in Turbinen- und Generatoranlagen, Stahleisen, SEP 1923, 2009.

17. Mooshofer H., Schoerner K., Nespoli N., Vrana J., Kolk K. Validierung von SAFT für die Herstellungsprüfung von Turbinenscheiben.- In: DACH-Jahrestagung, Friedrichshafen, 2019.

18. Mooshofer H., Vrana J. Optimization of the Inspection Duration for SAFT. - In:19th WCNDT. - Munich, Germany, 2016.

19. Seeber A., Vrana J., Mooshofer H., Goldammer M. Correct sizing of reflectors smaller than one wavelength. - In: 12th EC NDTesting. - Gothenburg, Sweden, 2018.

Login or Create
* Forgot password?