Moskva, Moscow, Russian Federation
A mathematical model is constructed that describes the propagation of laser pulses in vacuum, taking into account the corrections due to their finite duration. On its basis, using Newton relativistic equations with the corresponding Lorentz force, the energy spectra of an ensemble of electrons are simulated by relativistically intense laser radiation. The characteristics of these spectra are studied for the cases of Gaussian and Laguerre optical pulses. Electronic spectra in the fixed angular ranges are localized around the relativistic maxima in the case of Gaussian pulses, but are substantially non-monoenergetic in the case of Laguerre pulses.
relativistic intensity, wave packet, electron energy spectra
1. Mourou, G.A. Optics in the relativistic regime / G.A. Mourou // Rev. Mod. Physics. - 2006. - Vol.78. - P. 309-371.
2. Norreys, P.A. Intense laser-plasma interactions: New frontiers in high energy density physics / P.A. Norreys // Phys. Plasmas - 2009. - Vol.16. - P. 309-371.
3. Malka, V. Laser plasma accelerators/ V. Malka // Phys. Plasmas. - 2012. - Vol.19.
4. Esarey, E. Physics of laser-driven plasma-based electron accelerators / E. Esarey // Rev. Mod. Physics. - 2009. - Vol.8(1). - P. 1229-1285.
5. Mori, W.B. The development of laser- and beam-driven plasma accelerators as an experimental field / W.B. Mori // Phys. Plasmas. - 2007. - Vol.14.
6. Ohkubo, T. Wave-breaking injection of electrons to a laser wake field in plasma channels at the strong focusing regime / T.Ohkubo // Phys. Plasmas. - 2006. - Vol.13.
7. Wang, J. X. Electron capture and violent acceleration by an extra-intense laser beam / J.X.Wang // Phys. Rev. E. - 1998. - Vol.58.
8. Pang, J. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration / J. Pang // Phys. Rev. E. -2002. - Vol.66.
9. Kong, Q. Conditions for electron capture by an ultraintense stationary laser beam / Q.Kong // Phys. Rev. E. -2000. - Vol.61
10. Wang, P.X. Vacuum electron acceleration by an intense laser / P.X.Wang // Appl. Phys. Lett. -2001. - Vol.78
11. Salamin, Y.I. Electron scattering and acceleration by a tightly focused laser beam. / Y.I. Salamin // Phys. Rev. E ST. - 2002. - Accel. Beams 5
12. Wang, P.X. Characteristics of laser-driven electron acceleration in vacuum / P.X.Wang // J. Appl. Phys. -2002. - Vol.91
13. Payeur, S. Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse / S.Payeur // Appl. Phys. Lett. - 2012. - Vol.101.
14. Cao, N. Output features of vacuum laser acceleration / N. Cao // J. Appl. Phys. - 2002. - Vol. 92.
15. Galkin, A.L. Dynamics of an electron driven by relativistically intense laser radiation / A.L.Galkin // Phys. Plasmas . - 2008. - Vol. 15
16. Galkin, A.L. Acceleration of electrons to high energies in the field of a standing wave generated by counterpropagating intense laser pulses with tilted amplitude fronts / A.L.Galkin // Phys. Plasmas . - 2012. - Vol. 19
17. Korobkin, V.V. Concept of generation of extremely compressed high-energy electron bunches in several interfering intense laser pulses with tilted amplitude fronts / V.V. Korobkin // Laser and Particle Beams . - 2013. - Vol. 31.
18. Quesnel, B. Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum / B. Quesnel, P. Mora // Phys. Rev. E. - 1998. - Vol. 58.
19. Kalashnikov, M. Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region / M. Kalashnikov // Laser and Particle Beams . - 2015. - Vol. 33.
20. Yariv, A. Quantum Electronics / A. Yariv // NY, Wiley. - 1989.