STATIC CHARACTERISTICS ANALYSIS OF INDIRECT CONTROL FLOW VALVE
Abstract and keywords
Abstract (English):
A model of the indirect control flow divider for the steady state operation which maintains a twin-engined hydro-mechanical system in the synchronous common mode is considered. The divider is presented as an astatic regu-lator consisting of the sensor, amplifier, and regulating elements. However, its main static characteristics are the dependences of the timing failure on the regulating element spool speed, and those of the regulating element spool speed on the input control. The investigation of the static characteristics conducted according to a special program developed in the Mathcad package allows determining the presence of the hysteresis nonlinearity. The presence of the ambiguity zone is a troublesome factor indicating the self-oscillations onset probability in the closed loop system having a controller with such a property. In this case, the system would require the design constraints to ensure the characteristic of proportionality with saturation. Various design and operating parame-ters for the flow divider of the indirect control and the hydromechanical system are analyzed. This allows evaluat-ing its effect, range of variation, and obtaining the basic approaches to designing synchronous in-phase systems. Two astatic regulator models with and without leakage at the amplifier element, as well as various types of the amplifier orifice overlapping are considered. This analysis has demonstrated the sufficient accuracy of the mod-els, and the agreement of the results under the boundary conditions.

Keywords:
flow valve, static characteristics, differential gap, constructional and performance parameters, analytical methods.
Text

Введение. При разработке многодвигательных гидромеханических систем возникает задача выбора оптимальных параметров астатического регулятора для автоматической системы синхронизации.

 

Анализ характеристик для нулевого перекрытия. Работа делителя потока непрямого регулирования [1] как астатического регулятора в многодвигательных гидромеханических системах синхронно-синфазного функционирования [2] в установившемся режиме может быть оценена аналитическими зависимостями φ = f (vр), х = f (vр). Они описывают работу усилительного элемента регулятора с нулевым перекрытием рабочих окон в нейтральном положении без учета радиального зазора [3, 4].

References

1. Antonenko, V. I. Razrabotka konstruktsiy i optimizatsiya protsessov v gidroprivodakh sinkhronnykh mekhanizmov selskokhozyaystvennykh mashin. [Development of structures and optimization of processes in hydraulic drives of agricultural machinery synchronous mechanisms: Cand.tech.sci.diss., author’s abstract.] Rostov-on-Don, 1985, 25 p. (in Russian).

2. Antonenko, V. I., Sidorenko, V. S. K voprosu o sinkhronnykh mekhanizmakh mobilnykh mashin. [On synchronous mechanisms of mobile machines.] Vestnik of DSTU, 2009, Special iss. Technical Sciences, part 1, vol. 9, pp. 45-51 (in Russian).

3. Antonenko, V. I., Sidorenko, V. S. Nepryamoe drosselnoe regulirovanie v mnogodvigatelnykh gidromekhanicheskikh sistemakh. [Indirect valve regulation in multichamber hydromechanical systems.] Vest-nik of DSTU, 2010, vol. 10, no. 1(44), pp.70-75 (in Russian).

4. Antonenko, V. I., Sidorenko, V. S. Sintez struktury i razrabotka matematicheskoy modeli avtoma-tizirovannykh mnogodvigatelnykh gidravlicheskikh sistem. [Structure synthesis and mathematical modeling of automatic multiengined hydromechanical systems.] Vestnik of DSTU, 2010, vol. 10, no. 4(47), pp. 560-568 (in Russian).

5. Gurskiy, D. A., Turbina, E. S. Vychisleniya v Mathcad 12. [Calculating in Mathcad 12.] SPb, Piter, 2006, 544 p. (in Russian).

6. Salman, M. I., Popov, D. N. Kompyuternoe issledovanie i raschet gidrodinamicheskikh nagruzok na zolotnik. [Computer research and calculation of hydrodynamic loads on the valve.] Nauka i obrazovanie. [Sci-ence and Education.] Available at: http://technomag.bmstu.ru/doc/491484.html (accessed: 20.10.14) (in Rus-sian).

7. Popov, D. N. Mekhanika gidro- i pnevmoprivodov. [Mechanics of hydraulic and pneumatic drives.] Moscow : Izd-vo MGTU im N. E. Baumana, 2001, 320 p. (in Russian).

8. Kuropatkin, P. V. Teoriya avtomaticheskogo upravleniya. [Automatic Control Theory.] Moscow : Vysshaya shkola, 1973, 528 p. (in Russian).

9. Nazemtsev, A. S., Rybalchenko, D. E. Pnevmaticheskie i gidravlicheskie privody i sistemy. V 2 ch.Chast 2. Gidravlicheskie privody i sistemy.Osnovy. [Pneumatic and hydraulic actuators and systems. In 2 parts. Part 2. Hydraulic actuators and systems. Basics.] Moscow : Forum, 2007, 304 p. (in Russian).

10. Sveshnikov, V. K. Stanochnye gidroprivody spravochnik, 5-e izdanie, pererab. i dop. [Machine drives: reference book. 5th rev. and enl. ed.] Moscow, Mashinostroenie, 2008, 640 p. (in Russian).

Login or Create
* Forgot password?