Russian Federation
CSCSTI 76.33
CSCSTI 76.03
Russian Classification of Professions by Education 31.06.2001
Russian Classification of Professions by Education 31.08.08
Russian Classification of Professions by Education 32.08.12
Russian Classification of Professions by Education 14.04.02
Russian Library and Bibliographic Classification 534
Russian Library and Bibliographic Classification 51
Russian Trade and Bibliographic Classification 5712
Russian Trade and Bibliographic Classification 5734
Russian Trade and Bibliographic Classification 6212
Russian Trade and Bibliographic Classification 5708
Purpose: Study of the influence of high-power pulses of coherent non-ionizing terahertz (THz) radiation on the formation of foci of double-strand DNA breaks and the proliferative activity of human neuronal cells. Material and methods: Irradiated cell cultures are direct reprogramming neural progenitor cells (drNPCs), neuroblastoma cells (SK-N-BE). Cells are irradiated with a sequence of THz radiation pulses with a peak intensity of ~ 20 GW/cm2 and electric field strength of 2.8 MV/cm. Irradiation lasts 30 mins. Results: There is no statistically significant difference in the number of γH2AX histone foci between experimental and control cell groups. Conclusion: It was shown that a short exposure (30 min) of cells to THz radiation with intensity of 20 GW/cm2 does not affect the proliferative activity of both neural progenitor cells and neuroblastoma cells and does not cause a significant increase in γH2AX foci in any of the studied cell lines.
non-ionizing radiation, terahertz radiation, H2AX histone foci, proliferative activity, neural stem cells, SK-N-BE neuroblastoma
1. Fröhlich H. Long-range coherence and energy storage in biological systems. Int J Quantum Chem. 1968;2(5):641-9. DOI:https://doi.org/10.1002/qua.560020505.
2. Alexandrov BS, Gelev V, Bishop AR, Usheva A, Rasmussen KØ. DNA breathing dynamics in the presence of a terahertz field. Phys Lett A. 2010;374(10):1214-7. DOI:https://doi.org/10.1016/j.physleta.2009.12.077.
3. Titova LV, Ayesheshim AK, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann FA, et al. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci Rep. 2013;3(1):2363. DOI:https://doi.org/10.1038/srep02363.
4. Ol'shevskaya YuS, Kozlov AS, Petrov AK, Zapara TA, Ratushnyak AS. Vliyanie na neyrony in vitro teragercovogo (submillimetrovogo) lazernogo izlucheniya. Zhurnal vysshey nervnoy deyatel'nosti im. I.P. Pavlova. 2009;59(3):353-9.[Olshevskaya YUS, Kozlov AS, Petrov AK, Zapara TA, Ratushnyak AS. Effect of Terahertz (Submillimeter) Laser Radiation on Neurons in Vitro. Journal of Higher Nervous Activity. I.P. Pavlova. 2009; 59 (3): 353-9.]
5. Zapara TA, Treskova SP, Ratushniak AS. Effect of antioxidants on the interaction of terahertz (submillimeter) laser radiation and neuronal membrane. J Surf Investig. 2015;9(5):869-71.
6. Cheon H, Paik JH, Choi M, Yang HJ, Son JH. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep. 2019;9(1):1-10. DOI:https://doi.org/10.1038/s41598-019-42855-x.
7. Tan SZ, Tan PC, Luo LQ, Chi YL, Yang ZL, Zhao XL, et al. Exposure Effects of Terahertz Waves on Primary Neurons and Neuron-like Cells Under Nonthermal Conditions. Biomed Environ Sci. 2019;32(10):739-54. DOI:https://doi.org/10.3967/bes2019.094.
8. Perera PGT, Appadoo DRT, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, et al. PC 12 pheochromocytoma cell response to super high frequency terahertz radiation from synchrotron source. Cancers (Basel). 2019;11(2):1-17. DOI:https://doi.org/10.3390/cancers11020162.
9. Maskey D, Pradhan J, Aryal B, Lee C-M, Choi I-Y, Park K-S, et al. Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity. Brain Res. 2010;1346(Maskey2010):237-46. DOI:https://doi.org/10.1016/j.brainres.2010.05.045.
10. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo. J Cell Biol. 1999;146(5):905-16. DOI:https://doi.org/10.1083/jcb.146.5.905.
11. Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018 Oct 19;46(5):1213-24. DOI:https://doi.org/10.1042/BST20180519.
12. Sitnikov DS, Ilina I V, Pronkin AA. Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm. Opt Eng. 2020;59(06):061613. DOI:https://doi.org/10.1117/1.OE.59.6.061613.full
13. Ovchinnikov AV, Chefonov OV, Sitnikov DS, Il'ina IV, Ashitkov SI, Agranat MB, Istochnik teragercevogo izlucheniya s napryazhennost'yu elektricheskogo polya svyshe 1 MV/sm na osnove femtosekundnogo hrom-forsteritovogo lazera s chastotoy sledovaniya impul'sov 100 Gc. Kvantovaya elektronika. 2018;48(6):554-8. [Ovchinnikov AV, Chefonov OV, Sitnikov DS, Il’ina I V, Ashitkov SI, Agranat MB. A source of THz radiation with electric field strength of more than 1 MV cm-1 on the basis of 100-Hz femtosecond Cr : forsterite laser system. Quantum Electron. 2018;48(6):554-8. (In Russian) DOI: 10.1070/ qel16681].
14. Sitnikov DS, Romashevskiy SA, Ovchinnikov A V, Chefonov O V, Savel’ev AB, Agranat MB. Estimation of THz field strength by an electro-optic sampling technique using arbitrary long gating pulses. Laser Phys Lett. 2019;16(11):115302. DOI:https://doi.org/10.1088/1612-202X/ab4d56.
15. Sitnikov DS, Il'ina IV, Gurova SA, Shatalova RO, Revkova VA. Issledovanie indukcii dvunitevyh razryvov v fibroblastah kozhi cheloveka teragercevym izlucheniem vysokoy intensivnosti. Izvestiya Rossiyskoy Akademii Nauk Seriya Fizicheskaya. 2020;84:1605-16. DOI:https://doi.org/10.31857/s0367676520110277. [Sitnikov DS, Ilina I V, Gurova SA, Shatalova RO, Revkova VA. Studying the Induction of Double-Strand Breaks in Human Fibroblasts by High-Intensity Terahertz Radiation. Bull Russ Acad Sci Phys. 2020;84(11):1370-4. (In Russian) DOI:https://doi.org/10.3103/S1062873820 110-246].
16. Dhuppar S, Roy S, Mazumder A. γH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol Cell Biol. 2020;40(20). DOI:https://doi.org/10.1128/MCB.00328-20.
17. Bourge M, Fort C, Soler M, Satiat-Jeunemaître B, Brown SC. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle. New Phytol. 2015;205(2):938-50. DOI:https://doi.org/10.1111/nph.13069.
18. Yu T, MacPhail SH, Banáth JP, Klokov D, Olive PL. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst). 2006;5(8):935-46. DOI:https://doi.org/10.1016/j.dnarep.2006.05.040.
19. Sitnikov DS, Ilina I V., Revkova VA, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effect of high-power pulses of terahertz radiation on cell viability. In: 2020 International Conference Laser Optics (ICLO). IEEE; 2020. p. 1. DOI:https://doi.org/10.1109/ICLO48556.2020.9285431.
20. Nagelkerke A, Span PN. Staining Against Phospho-H2AX (γ-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells. In: Koumenis C, Coussens LM, Giaccia A, Hammond E, editors. Tumor Microenvironment. Springer International Publishing; 2016. p. 1-10. PMID: 27325258 DOI:https://doi.org/10.1007/978-3-319-26666-4_1



