ION-MOLECULAR MEMORY MODEL. THE FORMATION OF THE INFORMATION SPACE IN THE MEMORY BY MEANS OF HYDROGEN IONS
Abstract and keywords
Abstract (English):
Regular publications on the development of ion-molecular memory model focuses on the development of information area of memory. As in the previous paper, the main active agents are hydrogen ions. Formation of information code is regarded as the effectiveness of the range of activity of hydrogen ions (SAHI). Spectrum of activity is considered as dominant in the organization of transfer processes, storage and conversion information in developed model of memory. According to the position of modern knowledge the diagram of a hypothetical way to the library memory was developed and justified. The authors noted that the possibility of formation of an information code by means of SAHI is physical-logically consistent within the complex logic A.A. Zinoviev as the most perfect in the real time logic device. There is no need to ask the question: why dominates the spectrum of hydrogen? - This chemical is vital in the evolution of the bioorganic world. Supplemental approval is given in the paper, - the possibility of information duality of SAHI show a clear analogy between the latter and DNA. The above is illustrated in this paper as general physical and biophysical arguments and detailed mathematical analysis and thermodynamic description of SAHI. In general, it can be assumed that the proposed model of formation of the information space in memory by means of hydrogen ions carries the actual quality of the adequacy and in private provisions don’t contrary to popular works.

Keywords:
information memory space, spectrum of the activity of hydrogen ions, the hypothesis of N.Kobzev, information analogy of Haruki Murakami, library memory, electrical analogy.
References

1. Gerasimov I.G., Yashin A.A. Ionno-molekulyarnaya model´ pamyati. Osnovnye opredeleniya, vidy pamyati (kratkiy obzor). Vestnik novykh meditsinskikh tekhnologiy. 2013. T. 20. № 4. C. 165-170.

2. Gerasimov I.G., Yashin A.A. Ionno-molekulyarnaya model´ pamyati. Material´nye nositeli dostavki i khraneniya informatsii. Vestnik novykh meditsinskikh tekhnologiy. 2013. T. 20. № 4. C. 171-176.

3. Gerasimov I.G., Yashin A.A. Ionno-molekulyarnaya model´ pamyati. Sposoby kodirovaniya (formalizatsii) i perenosa informatsii. Vestnik novykh meditsinskikh tekhnologiy. 2014. T. 21. № 1. S. 100-105.

4. Gerasimov I.G. Spektr aktivnosti ionov vodoroda i vozmozhnosti bioregulirovaniya. Vestnik novykh meditsinskikh tekhnologiy. 1999. T. 6. № 1. S. 143-145.

5. Gerasimov I.G. Optimizatsiya usloviy opredeleniya kholinesterazy. Klin. lab. diagn. 2004. № 5. S. 35-38.

6. Gerasimov I.G. Spektr aktivnosti ionov vodoroda v aspekte kletochnoy deyatel´nosti. Vestnik novykh meditsinskikh tekhnologiy. 1999. T. 6. № 3-4. S. 12-15.

7. Gerasimov I.G., Ignatov D.Yu., Kotel´nitsiy M.A. Osobennosti vosstanovleniya nitrosinego tetrazoliya neytrofilami cheloveka. I. Vliyanie pH. Tsitologiya. 2005. T. 47. № 6. S. 549-553.

8. Gerasimov I.G., Ignatov D.Yu. Osobennosti vosstanovleniya nitrosinego tetrazoliya neytrofilami cheloveka. II. Vliyanie ionov natriya i kaliya. Tsitologiya. 2005. T. 47. № 6. S. 554-558.

9. Gerasimov I.G. Podkhody k otsenke parametrov spektra aktivnosti ionov vodoroda v biologicheskikh zhidkostyakh. I. Elektrokhimicheskiy metod. Vestnik novykh meditsinskikh tekhnologiy. 2006. T. 13. № 1. S. 136-138.

10. Gerasimov I.G., Chugay A.V. Podkhody k otsenke parametrov spektra aktivnosti ionov vodoroda v biologicheskikh zhidkostyakh. II. Indikatornyy metod. Vestnik novykh meditsinskikh tekhnologiy. 2006. T. 13. № 3. S. 48-49.

11. Gerasimov I.G. O stekhiometrii Na+/K+-obmena. Biofizika. 2007. № 1. S. 69-74.

12. Gerasimov I.G. Pochemu kletki otdayut predpochtenie kaliyu pered natriem: vozmozhnaya prichina al´ternativnogo vybora. Ros. fiziol. zhurn. im. I. M. Sechenova. 2007. T. 93. № 12. S. 1435-1436.

13. Pribram K. Yazyki mozga. M.: Progress, 1975. 464 s.

14. Aristotel´. Metafizika. M.: Eksmo, 2006. 606 s.

15. Beritov I.S. Struktura i funktsii kory bol´shogo mozga. M.: Nauka, 1969. 532 s.

16. Kobozev N.I. Issledovanie v oblasti termodinamiki protsessov informatsii i myshleniya. M.: Izd-vo Mosk. un-ta. 1971. 196 s.

17. Pevzner L. Osnovy bioenergetiki. M.: Mir, 1977. 310 s.

18. Albrecht-Buenhler G. In defense of «nonmolecular» cell biology. Int. Rev. Cytol. 1990. V. 120. P. 191-239.

19. Ivanov K.P. Bioenergetika i temperaturnyy gomeostaz. L: Nauka, 1972. 172 s.

20. Lenindzher A. Biokhimiya. M.: Mir, 1976. 958 s.

21. Nolmguist G.P. Evolution of chromosome bands: molecular ecology of nonsoding DNA. J. Mol. Evol. 1989. V. 28. P. 469-486.

22. Vinogradov A.E. Paradoks razmera genoma i problema izbytochnoy DNK. Tsitologiya. 1999. T. 41. № 1. S. 5-14.

23. Ivanov-Muromskiy K.A. Mozg i pamyat´. K.: Nauk. dumka, 1987. 136 s.

24. Murakami Kh. Strana Chudes bez tormozov i Konets Sveta. M.: Eksmo, 2003. 539 s.

25. Daniel´s F., Olberti R. Fizicheskaya khimiya. M.: Mir, 1978. 632 s.

26. Stratonovich R.L. K voprosu o tsennosti informatsii. Termodinamika i regulyatsiya biologicheskikh protsessov. M.: Nauka, 1984. S. 64-73.

27. Gordienko V.A. Fizicheskie polya i bezopasnost´ zhiznedeyatel´nosti. M.: AST: Astrel´: Profizdat, 2006. 316 s.

28. Beyts R. Opredelenie pH. L.: Khimiya. 1972. 398 s.

29. Baddeley A., Bueno O., Cahill L., Fuster J. M., Izquierdo I., McGaugh J. L., Morris R. G., Nadel L., Routtenberg A., Xavier G., Da Cunha C. The brain decade in debate: I. Neurobiology of learning and memory. Braz. J. Med. Biol. Res. 2000. V. 33. № 9. P. 993-1002.

Login or Create
* Forgot password?