State-of-the-art analysis for oxidizing technologies related to destruction of complexons and metalloorganic complexes in liquid radioactive waste has been carried out. Ways already put into practice, as well as the experimental ones have been considered. Oxidation by potassium permanganate and hydrogen peroxide and also ozonization and photo oxidation have been considered in detail. It has been shown that oxidation by potassium permanganate with subsequent filtration leads to decrease of isotopes activity, but hereby a considerable volume of manganese dioxide is formed. The ozonization application allows reduce considerably the liquid radioactive waste (LRW) volume, but along with this ozone is the extremely toxic and explosive substance demanding a special equipment for its production. Efficiency of oxidation by hydrogen peroxide and photo oxidation without catalysts is low. The special attention has been paid to combined oxidizing methods (AOP) based on use of ultra-violet (UV) radiation together with ozone and/or hydrogen peroxide. Such methods allow apply the strongest oxidizer – hydroxyl radical – for LRW processing. Efficiency of AOP-methods and their technological capabilities are substantially defined by characteristics of used UV radiation sources. A detailed analysis for a wide range of UV radiation possible sources (low and average pressure mercury lamps, amalgamate lamps, excimer lamps, light-emitting diodes and pulse xenon lamps) has been carried out, their comparative assessment has been executed. Great potential opportunities for the pulse xenon lamps providing a continuous range of radiation in UV area and high intensity for a stream of high-vigorous photons have been noted.
liquid radioactive waste, plasma and optical technologies, metalloorganic complexes, photo oxidative destruction, photochemical technologies, ultra-violet radiation.
1. Общая информация
Жидкие радиоактивные отходы (ЖРО) образуются на каждом этапе ядерного топливного цикла — от добычи урановых руд до переработки и захоронения отработанного ядерного топлива. ЖРО имеют максимальную опасность по причине их больших объемов и значительной активности, а также потенциальной возможности их неконтролируемого проникновения в окружающую среду.
К жидким радиоактивным отходам относятся не подлежащие дальнейшему использованию органические и неорганические жидкости, пульпы и шламы [1], в которых удельная активность радионуклидов более чем в 10 раз превышает значения уровней вмешательства (УВ) при поступлении с водой, приведенных в приложении П-2 «Норм радиационной безопасности» [2] (табл. 1).
ЖРО представляют собой жидкость (природную или обессоленную и умягченную воду), содержащую химические загрязнители и радионуклиды. Содержание органических и неорганических загрязнителей в ЖРО может составлять от единиц миллиграммов до сотен граммов (кубовые остатки) в литре [3].
Документами [1, 2, 4, 5] на основании которых определяется возможность сброса очищенных ЖРО в окружающую среду, строго запрещается:
- сброс ЖРО в хозяйственно бытовую и ливневую канализацию, водоемы, поглощающие ямы, колодцы, скважины, на поля орошения, поля фильтрации, в системы подземного орошения и на поверхность земли;
- сброс ЖРО в поверхностные и подземные водные объекты на водосборные площадки и на почву;
- смешивание радиоактивных и нерадиоактивных отходов, а также радиоактивных отходов разных категорий с целью снижения их уровня активности.
Также нормируется содержание органических и неорганических примесей в уже свободной от радионуклидов воде.
1. Osnovnyye sanitarnyye pravila obespecheniya radiatsionnoy bezopasnosti [Basic Sanitary Rules for Radiation Safety] (OSPORB 99/2010). SP 2.6.1.2612-10. Moscow: Mizdrav Russia, 2010. [in Russian]
2. Normy radiatsionnoy bezopasnosti [Radiation Safety Norms] (NRB-99/2009). SanPin 2.6.1.2523-09. Moscow: Mizdrav Russia, 2009. [in Russian]
3. Ryabchikov B.E. Ochistka zhidkikh radioaktivnykh otkhodov. [Purification of liquid radioactive waste.]. Moscow: DeLi print, 2008. 512 p. [in Russian]
4. Sanitarnyye pravila obrashcheniya s radioaktivnymi otkhodami [Sanitary rules for radioactive waste management] (SPORO-2002). SP 2.6.6.1168-02. Moscow: Mizdrav Russia, 2002. [in Russian]
5. Sbor pererabotka khraneniye i konditsionirovaniye zhidkikh radioaktivnykh otkhodov. Trebovaniya bezopasnosti. [Gathering processing storage and conditioning of liquid radioactive waste. Safety requirements.] NP-019-2000 // Vestnik Gosatomnadzora Rossii. 2000. № 6 (12). [in Russian]
6. Kul’skiy L.A., Strakhov E.B., Voloshinova A.M. Tekhnologiya vodoochistki na atomnykh energeticheskikh ustanovkakh. [Water purification technology for nuclear power plants] Kiev: Naukova Dumka, 1986. 272 p. [in Russian]
7. Ampelogova N.I., Simanovskiy YU.M., Trapeznikov A.A. Dezaktivatsiya v yadernoy energetike. [ Deactivation in Nuclear Energy] Moscow: Energoatomizdat, 1982. 256 p. [in Russian]
8. Nikiforov A.S., Kulichenko V.V., Zhikharev M.I. Obezvrezhivaniye zhidkikh radioaktivnykh otkhodov. [Neutralization of liquid radioactive waste.] Moscow: Energoatomizdat, 1985. 184 p. [in Russian]
9. Rudenko L.I., Dzhuzha O.V., Khan V.E. Razrabotka sposoba ochistki kubovykh ostatkov zhidkikh radioaktivnykh otkhodov ot organicheskikh soyedineniy i transuranovykh elementov [Development of treatment method for stillage residues of liquid radioactive wastes to remove organic substances and transuranium elements] // Materialy 5-y Mezhdunarodnoy konferentsii «Sotrudnichestvo dlya resheniya problemy otkhodov» [Proceedings of the 5th International Conference «Cooperation for Waste Issues».]. Khar’kov. 2008. [in Russian]
10. Seliverstov A.F., Lagunova Y.O., and Ershov B.G. Recovery of Radioactive Cobalt from Aqueous EDTA Solutions Using Concentrated Ozone // Radiochemistry. 2009. Vol. 51. No. 3. pp. 326-328. DOI:https://doi.org/10.1134/S1066362209030205
11. Rudenko L.I., Dzhuzha V.Ye., Khan O.V. Okislitel’naya ochistka zhidkikh radioaktivnykh otkhodov ot organicheskikh soyedineniy i radionuklidov permanganatom kaliya [The oxidizing purification of liquid radioactive waste from organic substances and radionuclides with the use of a water solution of potassium permangana] // Reports of the National Academy of Sciences of Ukraine. 2007; 2: 143-146. [in Russian]
12. Savkin A.E., Morenova A.G., Zakharova E.V., Rodygina N.I. Oxidative Sorption Treatment To Remove Radionuclides from the Bottoms of the Leningrad Nuclear Power Plant // Radiochemistry. 2003. 45 (4): 399-402. DOI:https://doi.org/10.1023/A:1026121906560
13. A. Yu. Garnov, A. V. Gogolev, V. P. Shilov, L. N. Astafurova, N. N. Krot. Catalytic Decomposition of Organic Anions in Alkaline Radioactive Waste: 1. EDTA Oxidation // Radiochemistry. 2002. Vol. 44. No. 5. pp. 482-488. DOI:https://doi.org/10.1023/A:1021183509099
14. Venkatadri R., Peters R.W. Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide, Fenton’s Reagent, and Titanium Dioxide-Assisted Photocatalysis // Hazardous Waste & Hazardous Materials. 1993. Vol. 10. No. 2. pp. 107-149. DOI:https://doi.org/10.1089/hwm.1993.10.107
15. Seliverstov A.F., Ershov B.G., Lagunova Yu.O., Morozov P.A., Kamrukov A.S., Shashkovskii S.G. Oxidative Degradation of EDTA in Aqueous Solutions under UV Irradiation // Radiochemistry. 2008. Vol. 50. No. 1. pp. 70-74. DOI:https://doi.org/10.1134/S1066362208010116
16. Shevchenko M.A., Marchenko P.V.,Taran P.N. Okisliteli v tekhnologii vodoobrabotki. [Oxidants in water treatment technology.] Kiyev: Naukova dumka, 1979. 176 pp. [in Russian]
17. Martynov P.N. et al. Sposob pererabotki zhidkikh radioaktivnykh otkhodov ot primeneniya dezaktiviruyushchikh rastvorov. [Method for processing liquid radioactive waste from the use of decontamination solutions] Patent RF, No. 2473145, 2013. [in Russian]
18. Lagunova Yu.O., Seliverstov A.F., Milyutin V.V., Yershov B.G. Vydeleniye radioaktivnogo kobal’ta (60so) iz vodnykh rastvorov, soderzhashchikh EDTA [Isolation of radioactive cobalt (60Co) from aqueous solutions containing EDTA] // Materialy nauchno-tekhnicheskogo seminara molodykh uchenykh i aspirantov FGUP «RADON» i IFKHE RAN [Proceedings of scientific and technical seminar for young scientists and graduate students FSUE «Radon» and IPCE]. Sergiyev Posad. 2013. [in Russian]
19. Aleshin A.M., Gusev B.A., Miroshnichenko I.V. Analiz effektivnosti retseptur rastvorov i tekhnologiy dezaktivatsii parogeneratorov PG-440 I PGV-1000M [Analysis of the effectiveness of formulations and solutions of decontamination of steam generators PG-440 and PGV-1000M] // Materialy 7-go mezhdunarodnogo seminara po gorizontal’nym parogeneratoram. [Proceedings of 7th international seminar on horizontal steam generators.] Podol’sk. 2006. [in Russian]
20. Karaffa-Korbutt’ V.V. Ozon i yego primeneniye v promyshlennosti i sanitarii. [Ozon and its application in industry and sanitation.] St. Petersburg: Obrazovaniye, 1912. [in Russian]
21. Lagunova Yu.O., Seliverstov A.F., Ershov B.G., Basiev A.G. Oxidative decomposition of oxalate ions in water solutions of concentrated ozone // Atomic energy. 2012. Vol. 113. No. 2. pp. 112-116. DOI:https://doi.org/10.1007/s10512-012-9603-9.
22. Omel’chuk V.V., Stakhiv M.R., Savkin A.Ye. Razrabotka tekhnologii i pererabotka kubovykh ostatkov na Kol’skoy AES. [Process development and vat residue treatment at the Kola NPP ] // Bezopasnost’ okruzhayushchey sredy [Environmental Safety]. 2007; 3: 34-37. [in Russian]
23. Hoigne J. In Progress Technologies for water treatment. Ed. Plenum. Press, 1988.
24. Razumovskiy S.D., Zaikov G.E. Ozon i yego reaktsii s organicheskimi soyedineniyami. [Ozone and its reaction with organic compounds.] Moscow: Nauka, 1974. 322 p. [in Russian]
25. Masschelein W.J. Processes unitaixes du treatmeut de l esu potable. Ed. CEBEIOC. Hiege., 1996.
26. Dmitriyev S.A., Savkin A.E., and Varlakov A.P. Pererabotka zhidkikh radioaktivnykh kontsentratov pervoy v mire AES [Treatment of liquid radioactive concentrates the world’s first nuclear power plant] // Sb. dokladov. Bezopasnost’ yadernykh tekhnologiy. Obrashcheniye s radioaktivnymi otkhodami. 7 mezhdunarodnaya konferentsiya. [Proc. reports. Safety of nuclear technology. Management of radioactive waste. 7 International Conference.] St. Petersburg. 2004.
27. Savkin A.E. Pererabotka kubovykh ostatkov AES s ispol’zovaniyem selektivnykh sorbentov. Cand. Diss [Processing resid NPP using selective sorbents. Cand. Diss] Moscow, 1999. 24 s. [in Russian]
28. Wang J., Wang X., Li G. Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis // J. Hazard. Mater., 2009, Vol. 176. pp. 333-338. DOIhttps://doi.org/10.1016/j.jhazmat.2009.11.032
29. Appaw C., Adewuyi Y.G. Destruction of carbon disulfide in aqueous solutions by sonochemical oxidation // J. Hazard. Mater. 2002; 90: 237-249. DOIhttps://doi.org/10.1016/S0304-3894(01)00350-8
30. William H.G., Joon-Wun Kang, and Douglas H.C. The chemistry of water treatment processes involving Ozone, Hydrogen Peroxide and ultraviolet radiation. // Ozone science & engineering. 1987. Vol. 9. pp. 335-352. DOIhttps://doi.org/10.1080/01919518708552148
31. Ku Y., Wang L., and Shen Y. Decomposition of EDTA in aqueous solution by UV/H2O2 process // J. Hazard. Mater. 1998. Vol. 60. pp. 41-55. DOIhttps://doi.org/10.1016/S0304-3894(97)00153-2
32. Lagunova Yu.O. Ispol’zovaniye ozona i peroksida vodoroda dlya okislitel’nogo razlozheniya organicheskikh kompleksonov v protsessakh ochistki ZHRO. Cand. Diss. [The use of ozone and hydrogen peroxide for the oxidative decomposition of organic complexing processes LRW treatment Cand. Diss.] Moscow, 2011. 165 p. [in Russian]
33. Avramenko V.A. et al. Sposob pererabotki kubovogo ostatka zhidkikh radioaktivnykh otkhodov. [Method for processing distillation residue liquid radioactive wastes], Patent RF, No. 2297055, 2006. [in Russian]
34. Avramenko V.A., Zheleznov V.V., and Kaplun E.V. Sorption-reagent method in liquid radioactive waste management // Materials Research Society Symposium - Proceedings Scientific Basis for Nuclear Waste Management XXV. Boston. 2002.
35. Avramenko V., Mayorov V., and Marinin D. Macroporous catalysts for hydrothermal oxidation of metallorganic complexes at liquid radioactive waste treatment // Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM Сер. «ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010». 2010.
36. Braehler G., Rieck R., and Avramenko V.A. Nuclide separation by hydrothermal treatment and ion exchange: a highly effective method for treatment of liquid effluents // Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM Сер. «ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM 2011». 2011.
37. Sergiyenko V.I., Avramenko V.A., Golub A.V. Gidrotermal’naya pererabotka kubovykh ostatkov AES [Hydrothermal processing resid NPP] // Materialy konferentsii «Vologdinskiye chteniya» [Proceedings of the conference «Vologdinskie chteniya»]. 2008. [in Russian]
38. Zefirov N.S. (gl. red.) i dr. Khimicheskaya entsiklopediya. [Chemical encyclopedia] Moscow.: Bol’shaya Rossiyskaya entsikl., 1998. 3400 p. [in Russian]
39. Block S.S., editor. Disinfection, Sterilization, and Preservation. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2001. 1481 pp.
40. ISO 21348 Process for Determining Solar Irradiances. 2007.
41. Novikov D.O., Lagunova Y.O., Kamrukov A.S. Photo-oxidative degradation of oxalate ions with concentrated ozone using high-intensity pulsed continuum UV radiation // High Energy Chemistry. 2014. Vol. 48. No. 6. pp. 389-390. DOI:https://doi.org/10.1134/S001814391406006X.
42. Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems. CRC Press, 2003. 384 pp.
43. AOP technology. Avalible at http://www.xenozone.ru/support/aop (accessed 3.12.2014). [in Russian]
44. Rekab K., Lepeytre C., Dunanda M. H2O2 and/or photocatalysis under UV-C irradiation for the removal of EDTA, a chelating agent present in nuclear waste waters // Applied Catalysis A: General. 2014. Vol. 488. pp. 103-110. DOIhttps://doi.org/10.1016/j.apcata.2014.09.036
45. Seshadri H., Sinha P.K. Efficient decomposition of liquid waste containing EDTA by advanced oxidation nanotechnology // J. Radioanal. Nucl. Chem. 2012. Vol. 292. pp. 829-835. DOI:https://doi.org/10.1007/s10967-011-1595-8
46. Rekab K., Lepeytre C., Goettmann F., Dunand M. Degradation of a cobalt(II)-EDTA complex by photocatalysis and H2O2/UV-C. Application to nuclear wastes containing 60Co // J. Radioanal. Nucl. Chem. 2015. Vol. 303. pp. 131-137. DOI:https://doi.org/10.1007/s10967-014-3311-y.
47. Koutchma T. Preservation and Shelf Life Extension UV Applications for Fluid Foods. Academic Press, 2014. 50 pp.
48. Schalk S., Volker A., and Erich A. UV-lamps for disinfection and advanced oxidation - Lamp types, technologies and applications. IUVA News 8(1): 32-37. UL. 2006.
49. Product catalogue Light Sources, Inc. 2013.
50. Repeta V.B., Shibanov V.V. Ustroystva, generiruyushchiye UF izlucheniye [UV radiation generating devices] // Flekso plyus, № 1, 2006.
51. Liua X.L., Wua F., and Denga N.S. Photodegradation of 17-ethynylestradiol in aqueous solution exposed to a highpressure mercury lamp (250 W) // Environmental Pollution. 2003. Vol. 126. No. 3. pp. 393-398. DOIhttps://doi.org/10.1016/S0269-7491(03)00229-X
52. Jin S., Sharpless C., and Linden K. Aging evaluation of medium-pressure mercury lamps under typical operating conditions for drinking water disinfection applications // Proceedings of the Water Environment Federation, Disinfection 2007. 2007.
53. Product catalogue NPO LIT. 2014.
54. Lomaev M.I., Skakun V.S., Sosnin E.A., Tarasenko V.F., Shitts D.V., Erofeev M.V. “Excilamps: efficient sources of spontaneous UV and VUV radiation” Phys. Usp. 46: 193-209 (2003); DOI:https://doi.org/10.1070/PU2003v046n02ABEH001308.
55. Kogelschatz U. Silent-discharge driven excimer UV sources and their applications // J. Appl. Surface Science. 1992; 54: 410-423. DOIhttps://doi.org/10.1016/0169-4332(92)90080-H.
56. Sosnin E. A., Pikulev A. A., Tarasenko V. F. Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation // Technical Physics. 2011. Vol. 56. No. 4. pp. 526-530 DOI:https://doi.org/10.1134/S1063784211040293
57. Izyumov S.V., Chabak A.F., Shchekotov E.Y. Optimization of Integrated Advanced VUV/UV/O3/H2O2 Destruction of Organic Matter and Degasification of Dissolved Oxygen in Industrial Condensate Water // «The 19th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil». San Diego. 2013.
58. Product catalogue Roithner Lasertechnik GmbH. 2014.
59. Charter C. Master degree thesis: «UV-LED irradiation technology for point-of-use water desinfection in developing communities». Colorado. 2009. 75 pp.
60. Korovina E., Selishcheva D., and Besova A. UV-LED TiO2 photocatalytic oxidation of acetone vapor: Effect of high frequency controlled periodic illumination // Applied Catalysis B: Environmental. 2015. Vol. 163. pp. 143-149. DOIhttps://doi.org/10.1016/j.apcatb.2014.07.034
61. Mohammadhossein R., Mostafa F. Kinetic study for photocatalytic degradation of Direct Red 23 in UV-LED/nano-TiO2/S2O82? process: Dependence of degradation kinetic on operational parameters // Journal of Industrial and Engineering Chemistry. 2014. Vol. 20. No. 5. pp. 3695-3702. DOIhttps://doi.org/10.1016/j.jiec.2013.12.068.
62. Bobyl A. V., Konnikov S. G., Ustinov V. M., et al. Radiationinduced surface degradation of GaAs and high electron mobility transistor structures // Semiconductors. 2012. Vol. 46. No. 6. pp. 814-824 DOI:https://doi.org/10.1134/S1063782612060085 [in Russian]
63. Yershov B.G., Kamrukov A.S., Seliverstov A.F. Razrabotka kombinirovannogo fotokhimicheskogo metoda ochistki vody ot vysokotoksichnykh soyedineniy [Development of a combined photochemical method of water purification from highly toxic compounds] // Sb. nauchn. trudov «Proyekty razvitiya infrastruktury goroda» [Proc. Scien. Works «Proyekty razvitiya infrastruktury goroda»]. Moscow. 2004. [in Russian]
64. Yershov B.G., Kamrukov A.S., Kozlov N.P. Novaya fotokhimicheskaya tekhnologiya pererabotki zhidkikh radioaktivnykh otkhodov [New technology photochemical processing of liquid radioactive wastes] // Sb. nauchnykh trudov VI Mezhdunar. Simpoziuma po radiatsionnoy plazmodinamiki. [Proc. scientific papers VI Intern. Symposium on Radiation plasma dynamics] RPD-2003. 2003.
65. Skvortsov L.S., Varshavskiy V.Ya., Kamrukov A.S. Ochistka sil’no zagryaznennykh stokov ot poligonov zakhoroneniya tverdykh bytovykh otkhodov [Purification of highly contaminated waste from landfill disposal of solid wastes] // Tez. Dokl. II Mezhdunar. Kongressa «Voda: ekologiya i tekhnologiya» Akvatek-96. [Proc. II International. Congress «Water: Ecology and Technology» Akvatek-96.] 1996. [in Russian]
66. Skvortsov L.S., Varshavskiy V.YA., Kamrukov A.S. Ochistka fil’trata poligonov tverdykh bytovykh otkhodov [Leachate treatment of solid waste landfills] // Chistyy gorod. 1998; 2: 2-7. [in Russian]
67. Goncharova A. Ya., Kamrukov A. S., Kirpichenkov A.B. et al. Photo-oxidative destruction of hemoglobin in aqueous solutions using high-intensity pulsed continuous-spectrum radiation // Pharmaceutical Chemistry Journal 2008. Vol. 42. No. 10. pp. 596-598. DOI:https://doi.org/10.1007/s11094-009-0178-2 [in Russian]
68. Kamrukov A.S., Kozlov N.P., Seliverstov A.F. Fotokhimicheskaya ochistka vody shirokopolosnym impul’snym UF izlucheniyem [Photochemical water purification broadband pulsed UV radiation] // Bezopasnost’ v tekhnosfere [Safety in technosphere]. 2006; 1: 38-44. [in Russian]
69. Kozlov N.P. Plazmennaya tekhnika i plazmennyye tekhnologii: Sb. nauchn. Trudov. [The plasma technology and plasma technology: Collection of scientific. Works] Moscow, NITS «Inzhener», 2003. [in Russian]
70. Kamrukov A.S., Kozlov N.P., Novikov D.O., Yalovik M.S. Photooxidative degradation of edta in aqueous solutions by pulsed uv radiation with continuous spectrum // Proceedings of the 40th Zvenigorod Conference on Plasma Physics and CF. Zvenigorod. 2013. [in Russian]
71. Ivahnenko E.U., Kamrukov A.S., Kozlov N.P., Novikov D.O., Yalovik M.S. Experimental studies of degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solutions with high concentration of sodium nitrate under pulsed broadband ultraviolet radiation // Science and education. 2013; 6: 71-80. DOI:https://doi.org/10.7463/0613.0577231. [in Russian]