employee from 01.01.1921 until now
Russian Federation
Russian Federation
UDK 621.65 Насосы и перекачка. Общие вопросы
This article describes the methodology and algorithm for determining linear fluid pressure losses in pipeline. Liquid substances widely used in the national economy are usually stored in special tanks. To store a large amount of liquid product, separate tanks are combined into tank farms. Tank farms are being built at industrial enterprises and transshipment bases of various transport systems. An example of this is the storage of vegetable oils in the seaport of Yeysk (Russian Federation, Krasnodar territory). Pumps (mainly centrifugal), pipelines, auxiliary devices are used to transfer liquid cargo from a vehicle to a tank, or back. The design of liquid product storage is impossible without hydraulic calculation of this equipment. Pressure losses to overcome hydraulic resistances have a significant impact on the operation of pipeline systems. The methodology of calculating linear fluid pressure losses in pipelines includes the determination of the flow mode (laminar/turbulent), followed by the calculation of the Darcy friction coefficients. Based on the results obtained, the pressure loss along the flow length is calculated, taking into account the geometric characteristics of the pipeline (length, diameter) and the fluid velocity. The methodology was used to construct an algorithm for calculating linear fluid pressure losses. This algorithm can be applied as part of a previously created algorithm for calculating and selecting a pumping unit for storage of liquid products.
Pipeline, liquid product, linear pressure losses, laminar flow regime, turbulent flow regime, Darcy coefficient, algorithm
1. Fragility and resilience indicators for portfolio of oil storage tanks subjected to hurricanes / S. Kameshwar, J.E. Padgett // Journal of Infrastructure Systems. - 2018. - T. 24, № 6. - Pp. 04018003. - DOI:https://doi.org/10.1061/(ASCE)IS.1943-555X.0000418.
2. Lightning exposure of oil tanks with changing roof position / A.I. Adekitan, M. Rock // Advances in Raw Material Industries for Sustainable Development Goals. - 2021. - Pp. 262-267.
3. Implementation of sustainable motorways of the sea services multi-criteria analysis of a Croatian port system / D. Žgaljić, E. Tijan, A. Jugović, T.P. Jugović // Sustainability. - 2019. - T. 11, № 23. - Pp. 6827. - DOI:https://doi.org/10.3390/su11236827.
4. A data-driven pipeline pressure procedure for remote monitoring of centrifugal pumps / R.A. Giro, G. Bernasconi, G. Giunta, S. Cesari // Journal of Petroleum Science and Engineering. - 2021. - T. 205. - Pp. 108845. - DOI:https://doi.org/10.1016/j.petrol.2021.108845.
5. Application of heterogeneous blading systems is the way for improving efficiency of centrifugal energy pumps / F. Pochylý, M. Haluza, S. Fialová, L. Dobšáková, A.V. Volkov, A.G. Parygin, A.V. Naumov, A.A. Vikhlyantsev, A.A. Druzhinin // Thermal Engineering. - 2017. - T. 64, № 11. - Pp. 794-801. - DOI:https://doi.org/10.1134/S0040601517110088.
6. CFD analysis of hydraulic performance in small centrifugal pumps operating with slurry / G.P. Botia, G.V. Ochoa, J.D. Forero // International Review on Modelling and Simulations. - 2019. - T. 12, № 6. - Pp. 364-372. - DOI:https://doi.org/10.15866/iremos.v12i6.18382.
7. Impact of design parameters on the performance of centrifugal pumps / M.E. Matlakala, D.V.V. Kallon, S.P. Simelane, P.M. Mashinini // 2nd International Conference on Sustainable Materials Processing and Manufacturing, SMPM. - 2019. - Pp. 197-206. - DOI:https://doi.org/10.1016/j.promfg.2019.05.027.
8. Psychoacoustic approach for cavitation detection in centrifugal pumps / J. Murovec, L. Čurović, T. Novaković, J. Prezelj // Applied Acoustics. - 2020. - T. 165. - Pp. 107323. - DOI:https://doi.org/10.1016/j.apacoust.2020.107323.
9. Anikin, Yu.V. Nasosy i nasosnye stancii : ucheb. posobie / Yu.V. Anikin, N.S. Carev, L.I. Ushakova. - Ekaterinburg : Ural'skiy federal'nyy universitet im. B.N. El'cina, 2018. - 138 s.
10. Morgunov, K.P. Nasosy i nasosnye stancii : uchebnoe posobie / K.P. Morgunov - Sankt-Peterburg : Lan', 2021. - 308 s.
11. Akimenko, A.V. Metodika i algoritm rascheta i podbora nasosnyh agregatov dlya hranilisch zhidkih produktov / A.V. Akimenko, E.A. Anikeev, V.V. Voronin // Modelirovanie sistem i processov. - 2022. - T. 15, № 1. - S. 7-13. - DOI:https://doi.org/10.12737/2219-0767-2022-15-1-7-13.
12. Gidravlika : uchebnik i praktikum dlya vuzov / V.A. Kudinov, E.M. Kartashov, A.G. Kovalenko, I.V. Kudinov ; pod redakciey V.A. Kudinova - M : Yurayt, 2021. - 386 s.
13. Nikitin, O.F. Osnovy gidravliki i gidropnevmoprivoda : uchebnik / O.F. Nikitin, V.V. Yaroc. - M. : Izdatel'stvo MGTU im. N. E. Baumana, 2019. - 490 s.
14. Kavitha Kumari, K.S. Effective microgrid cost reduction using dragon fly optimization algorithm and firefly algorithm / K.S. Kavitha Kumari, R.S.R. Babu // 2020 5th International Conference on Computing, Communication and Security (ICCCS). - 2020. - Pp. 9276979. - DOI:https://doi.org/10.1109/ICCCS49678.2020.9276979.
15. Ewees, A.A. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times / A.A. Ewees, M.A.A. Al-qaness, M. Abd Elaziz // Applied Mathematical Modelling. - 2021. - T. 94. - Pp. 285-305. - DOI:https://doi.org/10.1016/j.apm.2021.01.017.
16. Evdokimova, S.A. Algoritm analiza klientskoy bazy torgovoy organizacii / S.A. Evdokimova, T.P. Novikova, A.I. Novikov // Modelirovanie sistem i processov. - 2022. - T. 15, № 1. - S. 24-35. - DOI:https://doi.org/10.12737/2219-0767-2022-15-1-24-35.
17. Evdokimova, S.A. Primenenie algoritmov klasterizacii dlya analiza klientskoy bazy magazina / S.A. Evdokimova, A.V. Zhuravlev, T.P. Novikova // Modelirovanie sistem i processov. - 2021. - T. 14, № 2. - S. 4-12. - DOI:https://doi.org/10.12737/2219-0767-2021-14-2-4-12.
18. Zhaksybaev, D.O. Algoritmy klassifikacii tekstovyh dokumentov s uchetom blizosti v priznakovom prostranstve / D.O. Zhaksybaev, M.N. Bakiev // Modelirovanie sistem i processov. - 2022. - T. 15, № 1. - S. 36-43. - DOI:https://doi.org/10.12737/2219-0767-2022-15-1-36-43.
19. Novikova, T.P. Razrabotka algoritma i modeli funkcionirovaniya informacionnoy sistemy dlya malogo sel'skohozyaystvennogo predpriyatiya / T.P. Novikova, T.V. Novikova, A.I. Novikov // Modelirovanie sistem i processov. - 2020. - T. 13, № 4. - S. 53-58. - DOI:https://doi.org/10.12737/2219-0767-2021-13-4-53-58.
20. Oksyuta, O.V. Proektirovanie transportno-logisticheskogo kompleksa predpriyatiya / O.V. Oksyuta, V.A. Korotkih // Modelirovanie sistem i processov. - 2017. - T. 10, № 1. - S. 56-60. - DOI:https://doi.org/10.12737/article_5926f7b1a71e41.56282866.
21. Oksyuta, O.V. Razrabotka matematicheskoy modeli optimal'nogo funkcionirovaniya transportno-logisticheskogo kompleksa / O.V. Oksyuta, V.A. Korotkih // Modelirovanie sistem i processov. - 2017. - T. 10, № 3. - S. 55-66. - DOI:https://doi.org/10.12737/article_5a29283f79c556.29247378.
22. Skiena, S. Algoritmy. Rukovodstvo po razrabotke / S. Skiena. - SPb. : BHV-Peterburg, 2011. - 720 s.
23. Yurov, A.N. Proektirovanie avtomatizirovannoy sistemy proizvodstvennyh planirovok / A.N. Yurov // Modelirovanie sistem i processov. - 2019. - T. 12, № 1. - S. 87-93. - DOI:https://doi.org/10.12737/article_5d639c813abcb9.89415758.