The aim is to study the efficiency of numerical models of elastic stress fields in deformed solids. The field point-source method (PSM) designated as the method of fundamental solutions (MFS) in the foreign literature is used when creating these mod-els. The PSM system construction under simulating fields of different physical nature is described. We introduced the concept of a point-source elastic displacement field in the deformed solid. The research is resulted in the developed PSM equations system that can be used for solving various problems in the elasticity theory including the classical first and second boundary value problems solution in the elasticity theory (when either voltage or bias is specified at the boundary), as well as a mixed boundary problem (when displacement is given on one part of the bounda-ry, and voltage – on the other). The properties of PSM in solving standard problems and the Dirichlet problem for a circular do-main are studied. The dependences of the numerical solution error on the problem parameters, in particular, on the number of charges that simulate the desired field, on the remoteness of the charges from the boundaries of the solution domain are found. Based on these results, it is concluded that in the numerical solu-tion of the elasticity problems, PSM error decreases with the growth of the number of charges exponentially. This numerical solution property allows in certain cases obtaining the extremely accurate for computing solution with a relative error of the order of 10-15 that implies the PSM application perspectiveness under the numerical solution of elasticity problems
point-source method, method of fundamental solutions, elasticity problem, Dirichlet problem
Введение. Расчет полей упругих напряжений в деформированных телах является одной из важнейших задач прикладной механики и математики [1–3]. При численном решении этих задач в зависимости от их конкретных особенностей применяют различные численные методы. Довольно часто используются методы конечных разностей (МКР) [4] и граничных элементов (МГЭ) [3]. Однако особое место занимает метод конечных элементов (МКЭ) [2], который по праву можно считать эталоном для численного решения краевых задач математической физики. Тем не менее в ряде случаев, в том числе при моделировании полей упругих напряжений в деформированных твердых телах, использование МКЭ может оказаться неэффективным. Например, МКЭ не всегда обеспечивает требуемую высокую точность результата, особенно в тех случаях, когда необходимо найти производную от искомой функции, вычисление которой производится путем численного дифференцирования, что приводит к резкому увеличению погрешности вычислений. Кроме того, МКЭ может оказаться недостаточно быстродействующим, если необходимо получать решение в режиме реального времени. Таким образом, возникает необходимость поиска численных методов, позволяющих получать более точное решение за более короткий промежуток времени. В этом смысле представляет интерес метод точечных источников поля (МТИ) [5–12]. Он может использоваться для решения широкого круга задач математической физики. Наиболее эффективно использование этого метода при решении краевых задач для уравнений эллиптического типа: уравнений Лапласа, Гельмгольца, бигармонических уравнений [8, 13]. Имеются сведения о возможности и эффективности использования этого метода при решении краевых задач для уравнений параболического типа и для волновых уравнений [8, 14]. В данной статье иллюстрируется возможность применения МТИ при моделировании полей упругих напряжений в деформированных твердых телах. Прежде всего дадим краткое описание МТИ.
1. Pobedrya, B.Е. Chislennye metody v teorii uprugosti i plastichnosti. [Numerical methods in the theory of elasticity and plasticity.] 2nd ed. Moscow: Izdatel´stvo MGU, 1995, 366 p. (in Russian).
2. Alyamovskiy, А.А. Inzhenernyy analiz metodom konechnykh elementov. [Engineering finite element analysis.] Moscow: DMK Press, 2004, 426 p. (in Russian).
3. Gromadka II, T.V., Lai, Ch. Kompleksnyy metod granichnykh elementov. [The Complex Variable Boundary Element Method.] Moscow: Mir, 1990, 308 p. (in Russian).
4. Samarskiy, А.А. Teoriya raznostnykh skhem. [The difference scheme theory.] Moscow: Nauka, 1989, 616 p. (in Russian).
5. Aleksidze, М.А. Fundamental´nye funktsii v priblizhennykh resheniyakh granichnykh zadach. [Fundamental functions in the approximate solutions of boundary value problems.] Moscow: Nauka, 1991, 352 p. (in Russian).
6. Bakhvalov, Y.А., Knyazev, S.Y., Shcherbakov, A.A. Matematicheskoe modelirovanie fizicheskikh poley metodom tochechnykh istochnikov. [Mathematical modeling of physical fields by the point-source method.] Bulletin of the RAS. Physics, 2008, vol. 72, no. 9, pp. 1259-1261 (in Russian).
7. Knyazev, S.Y. Ustoychivost´ i skhodimost´ metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and convergence of the field point-source method in the numerical solution of boundary value problems for the Laplace equation.] Izvestiya vuzov. Elektromekhanika, 2010, no. 1, pp. 3-12 (in Russian).
8. Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 1998, vol. 9, pp. 69-95.
9. Golberg, M.A., Chen, C.S. The method of fundamental solutions for potential problem numerical and mathematical aspects. Boundary Integral Methods. Numerical and Mathematical Aspects. WIT Press : Southampton, 1998, pp. 103-176 (Computational Mechanics Publications).
10. Chen, J.T., Chen, I.-L., Lee Y.-T. Eigensolutions of multiply connected membranes using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 2005, vol. 29 (2), pp. 166-174.
11. Golberg, M. A. The method of fundamental solutions for Poisson’s equation. Engineering Analysis with Boundary Elements, 1995, vol. 16 (3), pp. 205-213.
12. Katsurada, M., Okamoto, H. The collocation points of the method of fundamental solutions for the potential problem. Computers & Mathematics with Applications, 1996, vol. 31, pp. 123-137.
13. Knyazev, S.Y., Shcherbakova, E.E. Reshenie granichnykh zadach matematicheskoy fiziki metodom tochechnykh istochnikov polya. [Solution to boundary value problems of mathematical physics by the field point-source method.] Izvestiya vuzov. Elektromekhanika, 2007, no. 3, pp. 11-15 (in Russian).
14. Knyazev, S.Y., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch´yu metoda tochechnykh istochnikov polya. [Solving problems of heat and mass transfer by the field point-source method.] Izvestiya vuzov. Elektromekhanika, 2006, no. 4, pp. 43-47 (in Russian).
15. Landau, L.D., Livshits, E.M. Teoriya uprugosti. [Elasticity theory.] 5-th ed. Moscow: Fizmatlit, 2003, 264 p. (in Russian).
16. Poullikkas, A., Karageorghis, A., Georgiou, G. The method of fundamental solutions for Signorini problems. IMA Journal of Numerical Analysis,1998, vol. 18, pp. 273-285.
17. Raamachandran, J., Rajamohan, C. Analysis of composite plates using charge simulation method. Engineering Analysis with Boundary Elements, 1996, vol. 18, pp. 131-135.
18. Yan Gu, Wen Chen, Xiaoqiao He. Improved singular boundary method for elasticity problems. Computers & Structures, 2014, vol. 135, pp. 7-82.
19. Marin, L., Karageorghis, A. The MFS-MPS for two-dimensional steady-state thermoelasticity problems. Engineering Analysis with Boundary Elements, 2013, vol. 37, iss. 7-8, pp. 1004-1020.
20. Marin, L., Lesnic, D. The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity. International Journal of Solids and Structures, 2004, vol. 41, pp. 3425-3438.
21. Drombosky, T.-W., Meyer, A.-L., Ling, L. Applicability of the method of fundamental solutions. Engineering Analysis with Boundary Elements, 2009, vol. 33, pp. 637-643.
22. Smyrlis, Y.-S., Karageorghis, A. Some aspects of the method of fundamental solutions for certain harmonic problems. Journal of Scientific Computing, 2001, vol. 16 (3), pp. 341-371.