Voronezh, Voronezh, Russian Federation
UDK 519.63 Численные методы решения дифференциальных уравнений с частными производными
The structural analysis of the dynamical system described by the differential equation in partial derivatives is carried out. The problem is to transfer the system from the initial state to the final state. The difference of this problem from the classical one is the presence of two required vector functions: state and control. The control problem is solved: the properties of matrix coefficients and functions that imply complete controllability (or uncontrollability of the system) are revealed; a step-by-step algorithm for constructing control functions and the corresponding state for a fully controlled system is presented. The study is carried out by the algorithmic method of cascade decomposition, which consists in a stage-by-stage (step-by-step) transition from the original system to systems of ever-decreasing sizes, and which allows optimizing the process of numerical implementation of the controlled process. The practical implementation of the method does not require exact formulas for constructing matrix coefficients, which makes it possible to avoid cumbersome matrix transformations and get by with the change of variables procedure. The implementation of the method is based on the properties of the matrix coefficient at the derivative of one of the desired functions and is algorithmically implemented in forward and backward steps. Each case of a (zero, reversible or irreversible) coefficient is considered in detail and, in the case of an irreversible coefficient, the system is split into a hierarchically structured set of subsystems of the first and second levels in the process of implementing the forward move. Further, in order to reveal the properties of matrix coefficients, the procedure of structural analysis of the subsystem of the second level is implemented, which is quite similar to the original system, but in a space of lower dimension. The finite-dimensionality of the original spaces implies the complete realization of the forward decomposition in a finite number of steps, which does not exceed the dimension of the original space. Uncontrollability or complete controllability of the system at the last decomposition step is revealed. In the case of revealing the property of complete controllability of the system of splitting the last step, the reverse course of the algorithm is implemented: obtaining formulas for constructing the control function and the corresponding state function. Introduced method allows one to vary when constructing the desired vector functions: functions that satisfy given boundary conditions can be constructed in exponential, fractional-rational, polynomial form, or in any other form that best suits the needs of the study.
Algorithm, dynamic system, control, state, structural analysis, cascade decomposition method
1. Kalman, R.E. Ob obschey teorii sistem upravleniya / R.E. Kalman // Trudy IFAC. - 1960. - S. 521-546.
2. Matematicheskaya teoriya optimal'nyh processov / L.S. Pontryagin, V.G. Boltyanskiy, R.V. Gamkrelidze, E.F. Mischenko. - M. : Fizmatgiz, 1961. - 384 s.
3. Krasovskiy, N.N. Teoriya upravleniya dvizheniem / N.N. Krasovskiy. - M. : Nauka, 1968. - 476 s.
4. Kien, B.T. Optimal control problems governed by fractional differential equations with control constraints / B.T. Kien, T.D. Phuong, V.E. Fedorov // SIAM Journal on Control and Optimization. - 2022. - Vol. 60, № 3. - Pp. 1732-1762. - DOI:https://doi.org/10.1137/21M1430728.
5. Danilin, A.R. Asimptotika resheniya zadachi optimal'nogo granichnogo upravleniya v dvuhsvyaznoy oblasti s razlichnoy intensivnost'yu na uchastkah granicy / A.R. Danilin // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. - 2022. - T. 62, № 2. - S. 217-231. - DOI:https://doi.org/10.31857/S0044466922020077.
6. Antipov, A.S. Synthesis of invariant nonlinear single-channel sigmoid feedback tracking systems ensuring given tracking accurasy / A.S. Antipov, S.A. Krasnova, V.A. Utkin // Automation and Remote Control. - 2022. - Vol. 83 (1). - Pp. 32-53. - DOI:https://doi.org/10.1134/S0005117922010039.
7. Danilin, A.R. Asimptotika resheniya zadachi optimal'nogo granichnogo upravleniya v dvuhsvyaznoy oblasti s razlichnoy intensivnost'yu na uchastkah granicy / A.R. Danilin, O.O. Kovrizhnyh // Trudy instituta matematiki i mehaniki UrO RAN. - 2022. - T. 28, № 1. - C. 58-73. - DOI:https://doi.org/10.31857/S0044466922020077.
8. Zhirabok, A.N. Metod identifikacii defektov v nelineynyh sistemah na osnove skol'zyaschih nablyudateley / A.N. Zhirabok, A.V. Zuev, A.E. Shumskiy // Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya. - 2021. - № 1. - S. 11-23. - DOI:https://doi.org/10.31857/S0002338821010145.
9. Tremba, A.A. Mixed robustness: analysis of systems with uncertain deterministic and random parameters by the example of linear systems / A.A. Tremba // Automation and Remote Control. - 2021. - Vol. 82 (3). - Pp. 410-432. - DOI:https://doi.org/10.1134/S0005117921030036.
10. Kokunco, Y.G. Cascade synthesis of differentiators with piecewise linear correction signals / Y.G. Kokunco, S.A. Krasnova, V.A. Utkin // Automation and Remote Control. - 2021. - Vol. 82 (7). - Pp. 1144-1168. - DOI:https://doi.org/10.1134/S000511792107002X.
11. Belov, A.A. Robust control design for supressing random exogenous disturbances in parametrically uncertain linear systems / A.A. Belov, O.G. Andrianova // Automation and Remote Control. - 2020. - Vol. 81 (4). - Pp. 649-661. - DOI:https://doi.org/10.1134/S0005117920040074.
12. Krasnova, S.A. Estimating the derivatives of external perturbations based on virtual Dynamic Models / S.A. Krasnova // Automation and Remote Control. - 2020. - Vol. 81 (5). - Pp. 897-910. - DOI:https://doi.org/10.1134/S0005117920050094.
13. Danilin, A.R. asymptotics of the solution of a singular optimal disturbed control problem with essential constraits in a convex domain / A.R. Danilin // Differential Equations. - 2020. - Vol. 56, № 2. - S. 251-263. - DOI:https://doi.org/10.1134/S001226612002010X.
14. Tchaikovsky, M.M. Anisotronic suboptimak control for systems with linear-fractional uncertainity / M.M. Tchaikovsky, A.P. Kurdukov // Automation and Remote Control. - 2018. - Vol. 79 (6). - Pp. 1100-1116. - DOI:https://doi.org/10.1134/S0005117918060097.
15. Krasnova, S.A. Hierarchical design of sigmoidal generalized moment of manipulator uncertainty / S.A. Krasnova, A.S. Antipov // Automation and Remote Control. - 2018. - 79 (3). - Pp. 554-570. - DOI:https://doi.org/10.1134/S000511791803013X.
16. Tchaikovsky, M.M. On upper estimate of anisotronic norm of uncertain system with application to stochastic robust control / M.M. Tchaikovsky, A.P. Kurdukov // International Journal of Control. - 2018. - Vol. 91 (11). - Pp. 2411-2421. - DOI:https://doi.org/10.1080/00207179.2017.1311025.
17. Raeckaya, E.V. Uslovnaya upravlyaemost' i nablyudamost' lineynyh sistem : special'nost' 01.01.02 «Differencial'nye uravneniya, dinamicheskie sistemy i optimal'noe upravlenie» : avtoref. diss. … kand..fiz.-mat. nauk / Raeckaya Elena Vladimirovna. - Voronezh. 2004. - 16 s.
18. Zubova, S.P. O polinomial'nyh resheniyah lineynoy stacionarnoy sistemy upravleniya / S.P. Zubova, E.V. Raeckaya, Le Hay Chung // Avtomatika i telemehanika.- 2008. - № 11. - S. 41-47.
19. Zubova, S.P. Construction of controls providing the desired output of the linear dynamic system derivatives / S.P Zubova, E.V Raetskaya // Automation and Remote Control. - 2018. - Vol. 79 (5). - P. 775-792. - DOI:https://doi.org/10.1134/S0005117918050016.
20. Zubova, S.P. Algorithm to solve linear multipoint problems of control by the method of cascade decomposition / S.P Zubova, E.V Raetskaya // Automation and Remote Control. - 2017. - Vol. 78 (7). - P. 1189-1202. - DOI:https://doi.org/10.1134/S0005117917070025.
21. Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P Zubova, E.V Raetskaya // Mathematical Methods in the Applied Science. - 2021. - Vol. 44, № 15, 2021. - Pp. 11998-12009. - DOI:https://doi.org/10.1002/mma.7130.
22. Zubova, S.P. Invariance of a nonstationary observability system under certain perturbations / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. - 2013. - Vol. 188, № 3. - Pp. 218-226. - DOI:https://doi.org/10.1007/s10958-012-1120-9.
23. Zubova, S.P. A study of the rigidity descriptor dynamical systems in a banach spase / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. - 2015. - Vol. 208, № 1. 2015. - Pp. 131-138. - DOI:https://doi.org/10.1007/s10958-015-2430-5.
24. Zubova, S.P. Postroenie upravleniya dlya polucheniya zadannogo vyhoda v sisteme nablyudeniya / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2015. - T. 20, № 5. - S. 1400-1404.
25. Zubova, S.P. Issledovanie singulyarno vozmuschennoy sistemy upravleniya / S.P. Zubova, E.V. Raeckaya //Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2018. - T. 23, № 122. - S. 303-308. - DOI:https://doi.org/10.20310/1810-0198-2018-23-122-303-308.
26. Zubova, S.P. Ob invariantnosti nestacionarnoy sistemy nablyudeniya otnositel'no nekotoryh vozmuscheniy / S.P. Zubova, E.V. Raeckaya, T.K. Fam // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2010. - T. 15, № 6. - S. 1678-1679.
27. Zubova, S.P. Solution of the Cauchy problem for two descriptive equations with fredholm operator / S.P Zubova, E.V Raetskaya // Doslady Mathematics. - 2015. - Vol. 90, №3. - Pp. 732-736. - DOI:https://doi.org/10.1134/S106456241407031X.
28. Zubova, S.P. Degeneraty property of a matrix differential operator and applications / S.P. Zubova, E.V. Raetskaya, V.I. Uskov // Journal of Mathematical Sciences. -2021. - Vol. 255, № 5. - Pp. 640-652. - DOI:https://doi.org/10.1007/s10958-021-05401-7.
29. Raeckaya, E.V. Postroenie upravleniya v forme obratnoy svyazi dlya lineynoy dinamicheskoy sistemy / E.V. Raeckaya // Sovremennye metody teorii funkciy i smezhnye problemy : sbornik materialov Mezhdunarodnoy konferencii «Voronezhskaya zimnyaya matematicheskaya shkola». - Voronezh, 2019. - S. 217-218.
30. Zubova, S.P. Reshenie polugranichnoy zadachi dlya vyrozhdennogo uravneniya v chastnyh proizvodnyh / S.P. Zubova, E.V. Raeckaya // Differencial'nye uravneniya. - 2022. - T. 58, № 9. - S. 1193-1204. - DOI:https://doi.org/10.31857/S0374064122090035.