Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Russian Federation
UDK 661.723.612 CH2=CH(Hlg)
The paper presents a solution to the problem of developing an information and control system for the process of propanone pyrolysis, which is the main source for the production of acetylketene, which is widely used in the synthesis of medicines and food additives, insecticides and fungicides, and paints and varnishes. A mathematical model of the propanone pyrolysis process in tube furnace coils has been developed, which takes into account the heat transfer in the reaction zone of the pyro coil by means of radiation from the walls of red-hot mines. The problem of identifying the kinetic parameters of the pyrolysis model on the basis of experimental data obtained at the facility was posed and solved. The problem of static optimization of the propanone pyrolysis process, which consists in maximizing the selectivity of the process, was posed and solved. The software package is made in C#, which is supported by many SCADA systems. The Hook-Jeeves configuration method was used as an optimizer in combination with the penalty function method. The technical, informational and software support for the information and control system of the process has been developed. To develop an information management system, SCADA software was used - RSView32 systems. It allows you to implement the visualization, accumulation and archiving of technological parameters. The main form of information presentation is the mnemonic diagram of the pyrolysis process, the other forms are called from the mnemonic diagram by pressing the corresponding virtual buttons.
Propanone pyrolysis, information control system, modeling, optimization, design, information technology.
1. Lapshina, M.L. Adaptaciya dekompozicionnogo podhoda k problemam soglasovaniya optimal'nyh planov / M.L. Lapshina, A.S. Chernyh, N.Yu. Yudina // Modelirovanie, optimizaciya i informacionnye tehnologii. - 2017. - № 3 (18). - S. 17.
2. Matematicheskoe modelirovanie promyshlennyh processov piroliza benzina v trubchatyh pechah / D.V. Arapov, S.G. Tihomirov, S.L. Podval'nyy [i dr.] // Teoreticheskie osnovy himicheskoy tehnologii. - 2018. - T. 52, № 6. - S. 649-662. - DOI:https://doi.org/10.1134/S0040357118060039.
3. Arapov, D.V. Optimizaciya piroliznyh pechey tipa SRT-VI krupnotonnazhnoy etilenovoy ustanovki / D.V. Arapov // Teoreticheskie osnovy himicheskoy tehnologii. - 2020. - T. 54, № 2. - S. 244-256. - DOI:https://doi.org/10.31857/S0040357120010017.
4. Mathematical model of large-tone pyrolysis installations in production of ethylene / D.V. Arapov, S.G. Tikhomirov, S.L. Podvalny, V.A. Kuritsyn // Journal of Physics. Conference Series. - 2019. - T. 1202. - S. 012024. - DOI:https://doi.org/10.1088/1742-6596/1202/1/012024.
5. An experimental and detailed kinetic modeling study of the pyrolysis and oxidation of DMF over a wide range of conditions / L. Liang [et al.] // Combustion and Flame. - 2022. - Vol. 245. - C. 112314. - DOI:https://doi.org/10.1016/j.combustflame.2022.112314.
6. Tereza, A.M. Self-ignition and pyrolysis of acetone behind reflected shock waves / A.M Tereza, S.P. Medvedev, V.N. Smirnov // Acta Astronautica. - 2020. - Vol. 176. - Pp. 653-661. - DOIhttps://doi.org/10.1016/j.actaastro.2020.03.045.
7. Mora, T. Finite Rate Reaction Mechanism Adapted for Modeling Pseudo-Equilibrium Pyrolysis of Cellulose / T. Mora // Processes. - 2022. - Vol. 10(10). - C. 2131. - DOI:https://doi.org/10.3390/pr10102131.
8. Substitution reactions in the pyrolysis of acetone revealed through a modeling, experiment, theory paradigm / D.P. Zaleski [et al.] // Journal of American Chemical Society. - 2021. - Vol. 143(8). - Pp. 3124-3142. - DOI:https://doi.org/10.1021/jacs.Oc11677.
9. Experimental and theoretical study on acetone pyrolysis in a jet-stirred reactor / D. Yu [et al.] // Fuel. - 2018. - Vol. 234. - Pp. 1380-1387. - DOI:https://doi.org/10.1016/j.fuel.2018.08.020.
10. Liu, Y. Effect of acetone content on the preparation period and curing/pyrolysis behavior of liquid policarbosilane / Y. Liu, X. Liu, P. Xu // Applied sciences. - 2020. - Vol. 10(21). - C. 7607. - DOI:https://doi.org/10.3390/app10217607.
11. Christensen, M. Laminar burning velocity of diacetyl + air flames. Further assessment of combustion chemistry of ketene / M. Christensen, A.A. Konnov // Combustion and Flame. - 2017. - Vol. 178. - Pp. 97-110. - DOI:https://doi.org/10.1016/j.combustflame.2016.12.026.
12. Kotkowski, T. Acetone adsorption on CO2 - activated type pyrolysis char - Thermogravimetric analysis / T. Kotkowski, R. Cherbanski, E. Molga // Chemical and Process Engineering. - 2018. - 39(2). - Pp. 233-246. - DOI:https://doi.org/10.24425/122946.
13. Bodrov, V.I. Vybor effektivnoy sistemy upravleniya pechami piroliza s uchetom mnozhestva sostoyaniy funkcionirovaniya / V.I. Bodrov, Yu.L. Muromcev, V.N. Shamkin // Teoreticheskie osnovy himicheskoy tehnologii. - 1987. - T. 21, № 4. - S. 530.
14. Kulik, T. Catalytic pyrolysis of aliphatic carboxylic acids into symmetric ketones over ceria-based catalysts: kinetics, isotope effect and mechanism / T. Kulik, B. Palianytsia, M. Larsson // Catalysts. - 2020. - Vol. 10(2). - C. 179. - DOI:https://doi.org/10.3390/catal10020179.
15. Safarian, S. Development and comparison of thermodynamic equilibrium and kinetic approaches for biomass pyrolysis modeling / S. Safarian, M. Rydén, M. Janssen // Energies. - 2022. - Vol. 15. - C. 3999. - DOI:https://doi.org/10.3390/en15113999.
16. Influence of minor impurities of acetone on soot formation in acetylene shock wave pyrolysis / A.V. Drakon [et al.] // XXXVI International Conference on Interaction of Intense Energy Fluxes with Matter (IIEFM 2021). - Elbrus, Kabardino-Balkaria, 2021. - C. 127.
17. Korus, A. Physicochemical properties of biochars prepared from raw and acetone-extracted pine wood / A. Korus, A. Sziek, A. Samson // Fuel Processing Technology. - 2019. - Vol. 185. - Pp. 106-116. - DOI:https://doi.org/10.1016/j.fuproc.2018.12.004.
18. Influence of fuel bound oxygen on soot mass and poliaromatic hydrocarbons during pyrolysis of ethanol, methyl acetat, acetone and diethyl ether / Z.A. Khan, P. Hellier, N. Ladommatos, A. Almaleku // Proceedings-Thiesel 2022 Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. - 2022. - Pp. 1-14. - DOI:https://doi.org/10.4995/Thiesel.2022.632801.