Russian Federation
UDK 621.3 Электротехника
The technology of modeling a field-effect transistor in the CAD system COMSOL Multiphysics is considered. The possibilities of CAD, its methods of graphical construction of the model and methods of modeling the behavior of the model are being studied. The object of study is the MOS transistor, its scope, operation and a mathematical model that can be used in designing its operation. The Shikhman-Hodges model, input and output parameters are determined, the degree of its adequacy to a real transistor is set, the main parameters are determined, with the help of which it is possible to conduct a study of a field-effect transistor, its current-voltage characteristic. A transistor model is built in the mode of operation in the mode of small-signal amplifiers, replacing it with a linear four-port model, it is described when this model can be applied when simulating the operation of the device.
Model, mathematical model, computer model, CAD, COMSOL Multiphysics, MOSFET, Shichman-Hodges model, current-voltage characteristic, small-signal amplifier mode.
1. Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka / A.A. Andronov, E.A. Leontovich, M.I. Gordon, A.G. Mayer. - M. : Nauka, 1966. - 568 s.
2. Nagornov, Yu.S. Modelirovanie atomarnyh processov v nanokristallah metodom Monte-Karlo: metodicheskie rekomendacii / Yu.S. Nagornov. - Tol'yatti: TGU, 2012. - 19 s
3. Matematicheskoe modelirovanie v sisteme «Stratum Computer» / D.V. Bayandin, A.V. Kubyshkin, O.I. Muhin, A.A. Ryabuha // Problemy obrazovaniya, nauchno-tehnicheskogo razvitiya i ekonomiki Ural'skogo regiona : sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii. - Berezniki, 1996. - S. 80-81.
4. Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. - 2020. - T. 13, № 1. - S. 32-39. - DOI:https://doi.org/10.12737/2219-0767-2020-13-1-32-39.
5. Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay [i dr.] // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. - Tambov, 2017. - S. 199-204.
6. Yudina, N.Yu. Analiz faktorov, okazyvayuschih vliyanie na nadezhnost' strukturnyh elementov slozhnyh vychislitel'nyh sistem / N.Yu. Yudina, A.N. Kovalev // Modelirovanie sistem i processov. - 2017. - T. 10, № 3. - S. 86-93. - DOI:https://doi.org/10.12737/article_5a2928416cdb36.94937249.
7. Opredelenie sobstvennyh teplovyh soprotivleniy silovyh tranzistorov i diodov IGBT modulya na osnove ego trehmernoy modeli / M. V. Il'in, E. A. Vilkov, I. V. Gulyaev, F. Briz Del' Blanko // Elektrotehnika. - 2019. - № 7. - S. 19-23
8. V'yurkov, V. V. Proletnye diody i tranzistory s peremennoy inzhekciey kak generatory i detektory izlucheniya teragercovogo diapazona / V. V. V'yurkov, K. V. Rudenko, V. F. Lukichev // SVCh-tehnika i telekommunikacionnye tehnologii. - 2020. - № 1-1. - S. 320-321.
9. Maksimenko, Yu.N. Moschnyy vysokovol'tnyy tranzistor so staticheskoy indukciey s antiparallel'nym diodom / Yu.N. Maksimenko // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. - 2022. - № 3(266). - S. 55-62. - DOI:https://doi.org/10.36845/2073-8250-2022-266-3-56-62.
10. Kondusov, V.V. Avtomatizirovannaya zondovaya stanciya dlya ispytaniya elektricheskih parametrov kristallov diodov i tranzistorov / V.V. Kondusov, V.A. Kondusov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. - 2019. - T. 15, № 5. - S. 105-110. - DOI:https://doi.org/10.25987/VSTU.2019.15.5.014.
11. Analiticheskaya model' proletnyh diodov i tranzistorov dlya generacii i detektirovaniya teragercovogo izlucheniya / K.V. Rudenko, M.K. Rudenko, I.A. Semenihin [i dr.] // Mikroelektronika. - 2018. - T. 47, № 5. - S. 14-21. - DOI:https://doi.org/10.31857/S054412690001732-2.
12. Sposob snizheniya dinamicheskih poter' v polumostovoy tranzistornoy sheme / O.A. Danilov, A.L. Ivanov, S.A. Il'in [i dr.] // Vestnik Chuvashskogo universiteta. - 2020. - № 1. - S. 89-96.
13. Dunaev, M.P. Modelirovanie poter' moschnosti v preobrazovatele chastoty / M.P. Dunaev, S.U. Dovudov // Elektrotehnicheskie sistemy i kompleksy. - 2021. - № 2 (51). - S. 45-51. - DOI:https://doi.org/10.18503/2311-8318-2021-2(51)-45-51.
14. Rentyuk, V. Obzor produktov IXYS. Tverdotel'nye rele i poluprovodnikovye moduli vysokoy moschnosti Poluprovodnikovye (diskretnye) moduli ot IXYS / V. Rentyuk // Silovaya elektronika. - 2021. - № 4 (91). - S. 14-15.
15. Shadmonhodzhaev, M.Sh. Razrabotka istochnika pitaniya dlya pozicii vibroakusticheskoy diagnostiki podshipnikov lokomotivnogo depo / M.Sh. Shadmonhodzhaev, A.P. Zelenchenko // Byulleten' rezul'tatov nauchnyh issledovaniy. - 2022. - № 2. - S. 43-49. - DOI:https://doi.org/10.20295/2223-9987-2022-2-43-49.
16. Mustafaev, A.G. Issledovanie ustoychivosti KMOP SBIS k effektu «zaschelkivaniya» / A.G. Mustafaev, G.A. Mustafaev, N.V. Cherkesova-Kalinina // Elektronika i elektrotehnika. - 2018. - № 4. - S. 1-7. - DOI:https://doi.org/10.7256/2453-8884.2018.4.28130.
17. Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications / S. Kang [et al.] // IEEE Microwave and Wireless Components Letters. - 2018. - Vol. 28, № 3. - Pp. 254-256. - DOI:https://doi.org/10.1109/LMWC.2018.2795346.
18. Coverage enhancement and fundamental performance of 5G: Analysis and field trial / G. Liu [et al.] // Communications Magazine. - 2019. - Vol. 57, № 6. - Pp. 126-131. - DOI:https://doi.org/10.1109/MCOM.2019.1800543.
19. Ahmadi, S. 5G NR: Architecture, technology, implementation and operation of 3GPP new radio standards / S. Ahmadi. - London, UK: Academic Press, 2019. - pp. 90-98.
20. Kuwabara, T. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G long-range base station applications / T. Kuwabara [et al.] // IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). - 2017. - Pp. 1-4. - DOI:https://doi.org/10.1109/CSICS.2017.8240471.
21. Schefter, M. A comparison of GaN VS GaAs system performance / M. Schefter, M. Ardavan // Aerospace China. - 2018. - Vol. 19(3). - Pp. 17-22. - DOI:https://doi.org/10.3969/j.issn.1671-0940.2018.03.003.
22. Shin, D.-H. 6-GHz-to-18-GHz AlGaN/GaN cascaded nonuniform distributed power amplifier MMIC using load modulation of increased series gate capacitance / D.-H. Shin, I.-B. Yom, D.-W. Kim // Etri Journal. - 2017. - Vol. 39 (5). - Pp. 737-745. - DOI:https://doi.org/10.4218/etrij.17.0116.0737.
23. Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems / M.-P. Lee, S. Kim, S.-J. Hong, D.-W. Kim // Micromachines. - 2020. - Vol. 11 (4). - C. 375. - DOI:https://doi.org/10.3390/mi11040375.
24. A 6-18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling / H. Park, H. Nam, K. Choi [et al.] // IEEE Transactions on Microwave Theory and Techniques. - 2018. - Vol. 66, no. 6. - Pp. 2638-2648. - DOI:https://doi.org/10.1109/TMTT.2018.2817521.
25. Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers / K. Krishnamurthy, R. Vetury, S. Keller [et al.] // IEEE Journal of Solid-State Circuits. - 2000. - Vol. 35, no. 9. - Pp. 1285-1292. - DOI:https://doi.org/10.1109/4.868037.
26. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure / S.K. Mohanty, Y.-Y. Chen, P.-H. Yeh [et al.] // Scientific Reports. - 2019. - Vol. 9. - C. 19691. - DOI:https://doi.org/10.1038/s41598-019-56292-3.
27. Darwish, A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity / A. Darwish, A.J. Bayba, H.A. Hung // IEEE Transactions on Electron Devices. - 2015. - Vol. 62, no. 3. - Pp. 840-846. - DOI:https://doi.org/10.1109/TED.2015.2396035.