SIMULATION OF DIODE OPERATION AND EVALUATION OF ITS OPERATION PARAMETERS
Abstract and keywords
Abstract (English):
The article discusses the simulation of the operation of a diode based on the compiled electrical circuit, and also considers the analysis of the operation of the dido under various operating conditions using the AnyDynamics 8 computer simulation program. Various approaches to the concept of modeling, model, and mathematical model are considered. The classification of models of semiconductor devices, current-voltage characteristic (CVC) and device operation scheme are evaluated. The physical properties of the diode are considered, then a transition is made to the analysis of the operation of the diode in a physical model, and on its basis a mathematical model of the diode is built, since the model works with small changes in current and voltage, then the transition is made to a low-signal model and a system of differential equations, behavior of an ideal diode. Classes of elementary elements are being developed, from which it is possible to build an electronic circuit, diode, resistor, capacitor, coil. A circuit is determined with the help of which it is possible to simulate the operation of a circuit with a connected ideal diode. The result of the work of the electrical circuit in the program AnyDynamics 8 was the creation o behavior of an ideal diode. Analysis of the obtained graphs in the future will allow you to perform modeling and analysis of the operation of an ideal diode.

Keywords:
Modeling, computer modeling, model, diode, Class, small-signal model, volt-ampere characteristic
References

1. Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka / A.A. Andronov, E.A. Leontovich, M.I. Gordon, A.G. Mayer. - M. : Nauka, 1966. - 568 s.

2. Nagornov, Yu.S. Modelirovanie atomarnyh processov v nanokristallah metodom Monte-Karlo: metodicheskie rekomendacii / Yu.S. Nagornov. - Tol'yatti: TGU, 2012. - 19 s

3. Matematicheskoe modelirovanie v sisteme «Stratum Computer» / D.V. Bayandin, A.V. Kubyshkin, O.I. Muhin, A.A. Ryabuha // Problemy obrazovaniya, nauchno-tehnicheskogo razvitiya i ekonomiki Ural'skogo regiona : sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii. - Berezniki, 1996. - S. 80-81.

4. Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. - 2020. - T. 13, № 1. - S. 32-39. - DOI:https://doi.org/10.12737/2219-0767-2020-13-1-32-39.

5. Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay [i dr.] // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. - Tambov, 2017. - S. 199-204.

6. Yudina, N.Yu. Analiz faktorov, okazyvayuschih vliyanie na nadezhnost' strukturnyh elementov slozhnyh vychislitel'nyh sistem / N.Yu. Yudina, A.N. Kovalev // Modelirovanie sistem i processov. - 2017. - T. 10, № 3. - S. 86-93. - DOI:https://doi.org/10.12737/article_5a2928416cdb36.94937249.

7. Opredelenie sobstvennyh teplovyh soprotivleniy silovyh tranzistorov i diodov IGBT modulya na osnove ego trehmernoy modeli / M. V. Il'in, E. A. Vilkov, I. V. Gulyaev, F. Briz Del' Blanko // Elektrotehnika. - 2019. - № 7. - S. 19-23

8. V'yurkov, V. V. Proletnye diody i tranzistory s peremennoy inzhekciey kak generatory i detektory izlucheniya teragercovogo diapazona / V. V. V'yurkov, K. V. Rudenko, V. F. Lukichev // SVCh-tehnika i telekommunikacionnye tehnologii. - 2020. - № 1-1. - S. 320-321.

9. Maksimenko, Yu.N. Moschnyy vysokovol'tnyy tranzistor so staticheskoy indukciey s antiparallel'nym diodom / Yu.N. Maksimenko // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. - 2022. - № 3(266). - S. 55-62. - DOI:https://doi.org/10.36845/2073-8250-2022-266-3-56-62.

10. Kondusov, V.V. Avtomatizirovannaya zondovaya stanciya dlya ispytaniya elektricheskih parametrov kristallov diodov i tranzistorov / V.V. Kondusov, V.A. Kondusov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. - 2019. - T. 15, № 5. - S. 105-110. - DOI:https://doi.org/10.25987/VSTU.2019.15.5.014.

11. Analiticheskaya model' proletnyh diodov i tranzistorov dlya generacii i detektirovaniya teragercovogo izlucheniya / K.V. Rudenko, M.K. Rudenko, I.A. Semenihin [i dr.] // Mikroelektronika. - 2018. - T. 47, № 5. - S. 14-21. - DOI:https://doi.org/10.31857/S054412690001732-2.

12. Sposob snizheniya dinamicheskih poter' v polumostovoy tranzistornoy sheme / O.A. Danilov, A.L. Ivanov, S.A. Il'in [i dr.] // Vestnik Chuvashskogo universiteta. - 2020. - № 1. - S. 89-96.

13. Dunaev, M.P. Modelirovanie poter' moschnosti v preobrazovatele chastoty / M.P. Dunaev, S.U. Dovudov // Elektrotehnicheskie sistemy i kompleksy. - 2021. - № 2 (51). - S. 45-51. - DOI:https://doi.org/10.18503/2311-8318-2021-2(51)-45-51.

14. Rentyuk, V. Obzor produktov IXYS. Tverdotel'nye rele i poluprovodnikovye moduli vysokoy moschnosti Poluprovodnikovye (diskretnye) moduli ot IXYS / V. Rentyuk // Silovaya elektronika. - 2021. - № 4 (91). - S. 14-15.

15. Shadmonhodzhaev, M.Sh. Razrabotka istochnika pitaniya dlya pozicii vibroakusticheskoy diagnostiki podshipnikov lokomotivnogo depo / M.Sh. Shadmonhodzhaev, A.P. Zelenchenko // Byulleten' rezul'tatov nauchnyh issledovaniy. - 2022. - № 2. - S. 43-49. - DOI:https://doi.org/10.20295/2223-9987-2022-2-43-49.

16. Mustafaev, A.G. Issledovanie ustoychivosti KMOP SBIS k effektu «zaschelkivaniya» / A.G. Mustafaev, G.A. Mustafaev, N.V. Cherkesova-Kalinina // Elektronika i elektrotehnika. - 2018. - № 4. - S. 1-7. - DOI:https://doi.org/10.7256/2453-8884.2018.4.28130.

17. Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications / S. Kang [et al.] // IEEE Microwave and Wireless Components Letters. - 2018. - Vol. 28, № 3. - Pp. 254-256. - DOI:https://doi.org/10.1109/LMWC.2018.2795346.

18. Coverage enhancement and fundamental performance of 5G: Analysis and field trial / G. Liu [et al.] // Communications Magazine. - 2019. - Vol. 57, № 6. - Pp. 126-131. - DOI:https://doi.org/10.1109/MCOM.2019.1800543.

19. Ahmadi, S. 5G NR: Architecture, technology, implementation and operation of 3GPP new radio standards / S. Ahmadi. - London, UK: Academic Press, 2019. - pp. 90-98.

20. Kuwabara, T. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G long-range base station applications / T. Kuwabara [et al.] // IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). - 2017. - Pp. 1-4. - DOI:https://doi.org/10.1109/CSICS.2017.8240471.

21. Schefter, M. A comparison of GaN VS GaAs system performance / M. Schefter, M. Ardavan // Aerospace China. - 2018. - Vol. 19(3). - Pp. 17-22. - DOI:https://doi.org/10.3969/j.issn.1671-0940.2018.03.003.

22. Shin, D.-H. 6-GHz-to-18-GHz AlGaN/GaN cascaded nonuniform distributed power amplifier MMIC using load modulation of increased series gate capacitance / D.-H. Shin, I.-B. Yom, D.-W. Kim // Etri Journal. - 2017. - Vol. 39 (5). - Pp. 737-745. - DOI:https://doi.org/10.4218/etrij.17.0116.0737.

23. Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems / M.-P. Lee, S. Kim, S.-J. Hong, D.-W. Kim // Micromachines. - 2020. - Vol. 11 (4). - C. 375. - DOI:https://doi.org/10.3390/mi11040375.

24. A 6-18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling / H. Park, H. Nam, K. Choi [et al.] // IEEE Transactions on Microwave Theory and Techniques. - 2018. - Vol. 66, no. 6. - Pp. 2638-2648. - DOI:https://doi.org/10.1109/TMTT.2018.2817521.

25. Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers / K. Krishnamurthy, R. Vetury, S. Keller [et al.] // IEEE Journal of Solid-State Circuits. - 2000. - Vol. 35, no. 9. - Pp. 1285-1292. - DOI:https://doi.org/10.1109/4.868037.

26. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure / S.K. Mohanty, Y.-Y. Chen, P.-H. Yeh [et al.] // Scientific Reports. - 2019. - Vol. 9. - C. 19691. - DOI:https://doi.org/10.1038/s41598-019-56292-3.

27. Darwish, A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity / A. Darwish, A.J. Bayba, H.A. Hung // IEEE Transactions on Electron Devices. - 2015. - Vol. 62, no. 3. - Pp. 840-846. - DOI:https://doi.org/10.1109/TED.2015.2396035.

Login or Create
* Forgot password?