Russian Federation
UDK 621.3 Электротехника
The article discusses the simulation of the operation of a diode based on the compiled electrical circuit, and also considers the analysis of the operation of the dido under various operating conditions using the AnyDynamics 8 computer simulation program. Various approaches to the concept of modeling, model, and mathematical model are considered. The classification of models of semiconductor devices, current-voltage characteristic (CVC) and device operation scheme are evaluated. The physical properties of the diode are considered, then a transition is made to the analysis of the operation of the diode in a physical model, and on its basis a mathematical model of the diode is built, since the model works with small changes in current and voltage, then the transition is made to a low-signal model and a system of differential equations, behavior of an ideal diode. Classes of elementary elements are being developed, from which it is possible to build an electronic circuit, diode, resistor, capacitor, coil. A circuit is determined with the help of which it is possible to simulate the operation of a circuit with a connected ideal diode. The result of the work of the electrical circuit in the program AnyDynamics 8 was the creation o behavior of an ideal diode. Analysis of the obtained graphs in the future will allow you to perform modeling and analysis of the operation of an ideal diode.
Modeling, computer modeling, model, diode, Class, small-signal model, volt-ampere characteristic
1. Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka / A.A. Andronov, E.A. Leontovich, M.I. Gordon, A.G. Mayer. - M. : Nauka, 1966. - 568 s.
2. Nagornov, Yu.S. Modelirovanie atomarnyh processov v nanokristallah metodom Monte-Karlo: metodicheskie rekomendacii / Yu.S. Nagornov. - Tol'yatti: TGU, 2012. - 19 s
3. Matematicheskoe modelirovanie v sisteme «Stratum Computer» / D.V. Bayandin, A.V. Kubyshkin, O.I. Muhin, A.A. Ryabuha // Problemy obrazovaniya, nauchno-tehnicheskogo razvitiya i ekonomiki Ural'skogo regiona : sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii. - Berezniki, 1996. - S. 80-81.
4. Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. - 2020. - T. 13, № 1. - S. 32-39. - DOI:https://doi.org/10.12737/2219-0767-2020-13-1-32-39.
5. Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay [i dr.] // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. - Tambov, 2017. - S. 199-204.
6. Yudina, N.Yu. Analiz faktorov, okazyvayuschih vliyanie na nadezhnost' strukturnyh elementov slozhnyh vychislitel'nyh sistem / N.Yu. Yudina, A.N. Kovalev // Modelirovanie sistem i processov. - 2017. - T. 10, № 3. - S. 86-93. - DOI:https://doi.org/10.12737/article_5a2928416cdb36.94937249.
7. Opredelenie sobstvennyh teplovyh soprotivleniy silovyh tranzistorov i diodov IGBT modulya na osnove ego trehmernoy modeli / M. V. Il'in, E. A. Vilkov, I. V. Gulyaev, F. Briz Del' Blanko // Elektrotehnika. - 2019. - № 7. - S. 19-23
8. V'yurkov, V. V. Proletnye diody i tranzistory s peremennoy inzhekciey kak generatory i detektory izlucheniya teragercovogo diapazona / V. V. V'yurkov, K. V. Rudenko, V. F. Lukichev // SVCh-tehnika i telekommunikacionnye tehnologii. - 2020. - № 1-1. - S. 320-321.
9. Maksimenko, Yu.N. Moschnyy vysokovol'tnyy tranzistor so staticheskoy indukciey s antiparallel'nym diodom / Yu.N. Maksimenko // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. - 2022. - № 3(266). - S. 55-62. - DOI:https://doi.org/10.36845/2073-8250-2022-266-3-56-62.
10. Kondusov, V.V. Avtomatizirovannaya zondovaya stanciya dlya ispytaniya elektricheskih parametrov kristallov diodov i tranzistorov / V.V. Kondusov, V.A. Kondusov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. - 2019. - T. 15, № 5. - S. 105-110. - DOI:https://doi.org/10.25987/VSTU.2019.15.5.014.
11. Analiticheskaya model' proletnyh diodov i tranzistorov dlya generacii i detektirovaniya teragercovogo izlucheniya / K.V. Rudenko, M.K. Rudenko, I.A. Semenihin [i dr.] // Mikroelektronika. - 2018. - T. 47, № 5. - S. 14-21. - DOI:https://doi.org/10.31857/S054412690001732-2.
12. Sposob snizheniya dinamicheskih poter' v polumostovoy tranzistornoy sheme / O.A. Danilov, A.L. Ivanov, S.A. Il'in [i dr.] // Vestnik Chuvashskogo universiteta. - 2020. - № 1. - S. 89-96.
13. Dunaev, M.P. Modelirovanie poter' moschnosti v preobrazovatele chastoty / M.P. Dunaev, S.U. Dovudov // Elektrotehnicheskie sistemy i kompleksy. - 2021. - № 2 (51). - S. 45-51. - DOI:https://doi.org/10.18503/2311-8318-2021-2(51)-45-51.
14. Rentyuk, V. Obzor produktov IXYS. Tverdotel'nye rele i poluprovodnikovye moduli vysokoy moschnosti Poluprovodnikovye (diskretnye) moduli ot IXYS / V. Rentyuk // Silovaya elektronika. - 2021. - № 4 (91). - S. 14-15.
15. Shadmonhodzhaev, M.Sh. Razrabotka istochnika pitaniya dlya pozicii vibroakusticheskoy diagnostiki podshipnikov lokomotivnogo depo / M.Sh. Shadmonhodzhaev, A.P. Zelenchenko // Byulleten' rezul'tatov nauchnyh issledovaniy. - 2022. - № 2. - S. 43-49. - DOI:https://doi.org/10.20295/2223-9987-2022-2-43-49.
16. Mustafaev, A.G. Issledovanie ustoychivosti KMOP SBIS k effektu «zaschelkivaniya» / A.G. Mustafaev, G.A. Mustafaev, N.V. Cherkesova-Kalinina // Elektronika i elektrotehnika. - 2018. - № 4. - S. 1-7. - DOI:https://doi.org/10.7256/2453-8884.2018.4.28130.
17. Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications / S. Kang [et al.] // IEEE Microwave and Wireless Components Letters. - 2018. - Vol. 28, № 3. - Pp. 254-256. - DOI:https://doi.org/10.1109/LMWC.2018.2795346.
18. Coverage enhancement and fundamental performance of 5G: Analysis and field trial / G. Liu [et al.] // Communications Magazine. - 2019. - Vol. 57, № 6. - Pp. 126-131. - DOI:https://doi.org/10.1109/MCOM.2019.1800543.
19. Ahmadi, S. 5G NR: Architecture, technology, implementation and operation of 3GPP new radio standards / S. Ahmadi. - London, UK: Academic Press, 2019. - pp. 90-98.
20. Kuwabara, T. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G long-range base station applications / T. Kuwabara [et al.] // IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). - 2017. - Pp. 1-4. - DOI:https://doi.org/10.1109/CSICS.2017.8240471.
21. Schefter, M. A comparison of GaN VS GaAs system performance / M. Schefter, M. Ardavan // Aerospace China. - 2018. - Vol. 19(3). - Pp. 17-22. - DOI:https://doi.org/10.3969/j.issn.1671-0940.2018.03.003.
22. Shin, D.-H. 6-GHz-to-18-GHz AlGaN/GaN cascaded nonuniform distributed power amplifier MMIC using load modulation of increased series gate capacitance / D.-H. Shin, I.-B. Yom, D.-W. Kim // Etri Journal. - 2017. - Vol. 39 (5). - Pp. 737-745. - DOI:https://doi.org/10.4218/etrij.17.0116.0737.
23. Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems / M.-P. Lee, S. Kim, S.-J. Hong, D.-W. Kim // Micromachines. - 2020. - Vol. 11 (4). - C. 375. - DOI:https://doi.org/10.3390/mi11040375.
24. A 6-18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling / H. Park, H. Nam, K. Choi [et al.] // IEEE Transactions on Microwave Theory and Techniques. - 2018. - Vol. 66, no. 6. - Pp. 2638-2648. - DOI:https://doi.org/10.1109/TMTT.2018.2817521.
25. Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers / K. Krishnamurthy, R. Vetury, S. Keller [et al.] // IEEE Journal of Solid-State Circuits. - 2000. - Vol. 35, no. 9. - Pp. 1285-1292. - DOI:https://doi.org/10.1109/4.868037.
26. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure / S.K. Mohanty, Y.-Y. Chen, P.-H. Yeh [et al.] // Scientific Reports. - 2019. - Vol. 9. - C. 19691. - DOI:https://doi.org/10.1038/s41598-019-56292-3.
27. Darwish, A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity / A. Darwish, A.J. Bayba, H.A. Hung // IEEE Transactions on Electron Devices. - 2015. - Vol. 62, no. 3. - Pp. 840-846. - DOI:https://doi.org/10.1109/TED.2015.2396035.