Voronezh, Voronezh, Russian Federation
UDK 519.63 Численные методы решения дифференциальных уравнений с частными производными
For a dynamic system described by a partial differential equation of different order, the problem of constructing software control in an analytical form is solved. The primary method of research is the cascade decomposition method, the improved algorithm of which includes three main stages: the forward move, the central stage and the reverse move. The method is based on the properties of the matrix coefficient with a second-order partial derivative of the control function. The noetherianness of the coefficient causes the splitting of the original space into direct sums of subspaces. A scheme for structuring subspaces in accordance with the properties of the matrix coefficient is given. The direct move of decomposition is realized, which consists in a step-by-step transition to equivalent hierarchically structured systems of two levels in subspaces. The step-by-step structuring of the components of the state function into functions from subspaces while using matrix coefficients - projectors is performed. The resulting functions from subspaces are called pseudo-state and pseudo-control functions. Graphical visualization of the hierarchical structure of the source space in the form of a diagram is performed. This scheme reflects the essential connections between the components of the subspaces of each decomposition level. Finite-dimensional spaces are considered, which causes the complete completion of the first stage of the algorithm in a finite number of steps not exceeding the dimension of the original space. During the decomposition, the conditions at the start and end points are reduced, so that at the end of each step of the forward stroke, one additional condition appears at each point for each second-level system. In the process of implementing the first stage of the algorithm, the properties of matrix coefficients entailing full controllability or unmanageability of the initial system are established; the properties of functions in the initial conditions necessary for the implementation of the controlled process are also revealed. The criterion of complete controllability of the initial system is deduced. For a fully controlled system, a transition is made to the central stage of the algorithm – the construction of a defining basis function that satisfies all additional conditions for partial derivatives in time at each point resulting from the reduction of the original ones. It is the presence of this defining basic function that lays the prerequisites for constructing the state and control functions of the initial system at the final stage of the algorithm. A diagram visualizing the procedure of step-by-step restoration of the components of the state function in the process of implementing the reverse course is given. The reverse is completed by explicitly constructing first the state function, then the control function. A qualitative analysis of the management structure of the system under study is carried out.
Algorithm, cascade decomposition, dynamic system, program control, state function, partial derivatives, matrix coefficient, structural analysis
1. Petrenko, P.S. Controllability of a Singular Hybrid System / P.S. Petrenko // The bulletin of Irkutsk state university. Series: Mathematics. - 2020. - Vol. 34. - Pp. 35-50. - DOI:https://doi.org/10.26516/1997-7670.2020.34.35.
2. Petrenko, P.S. Robastnaya upravlyaemost' nestacionarnyh differencial'no-algebraicheskih uravneniy / P.S. Petrenko // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika. - 2018. - T. 25. - S. 79-92. - DOI:https://doi.org/10.26516/1997-7670.2018.25.79.
3. Furtat, I.B. Spatially Discrete Control of Scalar Linear Distributed Plants of Parabolic and Hiperbolic Types / I.B. Furtat, P.A. Gushin // Automation and Remote Control. - 2021. - T. 82 (3) - Pp. 433-448. - DOI:https://doi.org/10.1134/S0005117921030048.
4. Elkin, V.I. Primenenie differencial'no-geometricheskih metodov teorii upravleniya v teorii differencial'nyh uravneniy s chastnymi proizvodnymi. I / V.I. Elkin // Differencial'nye uravneniya. - 2021. - T. 57, № 11. - S. 1474-1482. - DOI:https://doi.org/10.31857/S0374064121110054.
5. Futat, I.B. Upravlenie dinamicheskimi ob'ektami s garantiey nahozhdeniya reguliruemogo signala v zadannom mnozhestve / I.B. Furtat, P.A. Guschin // Avtomatika i telemehanika. - 2021. - T. 4. - S. 121-139. - DOI:https://doi.org/10.31857/S000523102104005X.
6. Antipov, A.S. Synthesis of Invariant Nonlinear Signal-Channel Sigmoid Feedback Tracking Systems Ensuring Given Tracking Accuracy / A.S. Antipov, S.A. Krasnova, V.A. Utkin // Automation and Remote Control. - 2022. - T. 83(1). - Pp. 32-53. - DOI:https://doi.org/10.31857/S0005231022010032.
7. Scheglova, A.A. Ob upravlyaemosti differencial'no-algebraicheskih uravneniy v klasse impul'snyh vozdeystviy / A.A. Scheglova //Sibirskiy matematicheskiy zhurnal. - 2018. - T. 59, № 1. - P. 210-224. - DOI:https://doi.org/10.17377/smzh.2018.59.118.
8. Prilepko, A.I. Zadachi upravleniya i nablyudeniya v banahovyh prostranstvah. Optimal'noe upravlenie i princip maksimuma. Primenenie dlya ODU v / A.I. Prilepko // Differencial'nye uravneniya. - 2019. - T. 55, № 12. - S. 1683-1692. - DOI:https://doi.org/10.1134/S0374064119120094.
9. Amosova, E.V. Tochnaya lokal'naya upravlyaemost' dvumernym techeniem vyazkogo gaza / E.V. Amosova // Differencial'nye uravneniya. - 2020. - T. 56, № 11. - S. 1447-1470. - DOI:https://doi.org/10.1134/S0374064120110047.
10. Mezhdu LOG/H2 i H1 teoriyami upravleniya / A.P. Kurdyukov, O.G. Andrianova, A.A. Belov, D.A. Gol'din // Avtomatika i telemehanika. - 2021. - T. 4. - S. 8-76. - DOI:https://doi.org/10.31857/S0005231021040024.
11. Maksimov, V.I. O garantirovannom upravlenii lineynoy sistemoy differencial'nyh uravneniy pri nepolnoy informacii o fazovyh koordinatah / V.I. Maksimov // Differencial'nye uravneniya. - 2021. - T. 57, № 11. - S. 1491-1502. - DOI:https://doi.org/10.31857/S0374064121110078.
12. Hramcov, O.V. Upravlyaemost' vpolne integriruemyh lineynyh nestacionarnyh sistem Pfaffa / O.V. Hramcov, S.A. Prohozhiy // Differencial'nye uravneniya. - 2020. - T. 56, № 8. - S. 1130-1134. - DOI:https://doi.org/10.1134/S0374064120080130.
13. Golubev, A.E. construction of programmed motion of constrained mechanical systems using third-order polinomials / A.E. Golubev // Journal of Computer and Systems Sciences International. - 2021. - Vol. 60 (2) - Pp. 303-314. - DOI: https://doi.org/10.1134/S1064230720060040.
14. Priluckiy, M.H. Programmnye upravleniya dvuhstadiynymi stohasticheskimi proizvodstvennymi sistemami / M.H. Priluckiy // Avtomatika i telemehanika. - 2020. - № 1. - S. 81-92. - DOI:https://doi.org/10.31857/S0005231020010067.
15. Raeckaya, E.V. Algoritm postroeniya upravleniya dinamicheskoy sistemoy v chastnyh proizvodnyh / E.V. Raeckaya // Modelirovanie sistem i processov. - 2022. - T. 15, № 4. - S. 116-127. - DOI:https://doi.org/10.12737/2219-0767-2022-15-4-116-127.
16. Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P Zubova, E.V Raetskaya // Mathematical Methods in the Applied Science. - 2021. - Vol. 44, № 15. - Pp. 11998-12009. - DOI:https://doi.org/10.1002/mma.7130.
17. Zubova, S.P. Control problem for dynamical systems with partial derivatives / S.P Zubova, E.V Raetskaya, L.H. Trung // Journal of Mathematical Sciences. - 2021. - V. 249, № 6. - P. 941-953. - DOI:https://doi.org/10.1007/s10958-020-04986-9.
18. Zubova, S.P. Issledovanie singulyarno vozmuschennoy sistemy upravleniya / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2018. - T. 23, № 122. - S. 303-308. - DOI:https://doi.org/10.20310/1810-0198-2018-23-122-303-308.
19. Zubova, S.P. Construction of controls providing the desired output of the linear dynamic system derivatives / S.P Zubova, E.V Raetskaya // Automation and Remote Control. - 2018. - Vol. 79 (5). - P. 775-792. - DOI:https://doi.org/10.1134/S0005117918050016.
20. Zubova, S.P. Algoritm resheniya lineynyh mnogotochechnyh zadach upravleniya metodom kaskadnoy dekompozicii / S.P. Zubova, E.V. Raeckaya // Avtomatika i telemehanika. - 2017. - № 7. - S. 22-38. - DOI:https://doi.org/10.1134/S0005117917070025.
21. Zubova, S.P. Postroenie upravleniya dlya polucheniya zadannogo vyhoda v sisteme nablyudeniya / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2015. - T. 20, № 5. - S. 1400-1404.
22. Zubova, S.P. O polinomial'nyh resheniyah lineynoy stacionarnoy sistemy upravleniya / S.P. Zubova, E.V. Raeckaya, Le Hay Chung // Avtomatika i telemehanika.- 2008. - № 11. - S. 41-47.
23. Zubova, S.P. Invariance of a nonstationary observability system under certain perturbations / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. - 2013. - Vol. 188, № 3. - Pp. 218-226. - DOI:https://doi.org/10.1007/s10958-012-1120-9.
24. Zubova, S.P. Ob invariantnosti nestacionarnoy sistemy nablyudeniya otnositel'no nekotoryh vozmuscheniy / S.P. Zubova, E.V. Raeckaya, T.K. Fam // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2010. - T. 15, № 6. - S. 1678-1679.
25. Zubova, S.P. A study of the rigidity descriptor dynamical systems in a banach spase / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. - 2015. - Vol. 208, № 1. 2015. - Pp. 131-138. - DOI:https://doi.org/10.1007/s10958-015-2430-5.
26. Zubova, S.P. Reshenie zadachi Koshi dlya dvuh deskriptornyh uravneniy s neterovym operatorom / S.P. Zubova, E.V. Raeckaya // Doklady akademii nauk. - 2014. - T. 459, № 5. - S. 640-652. - DOI:https://doi.org/10.7868/S0869565214350084.
27. Zubova S.P. Degeneraty Property of a Matrix Differential Operator and Applications / S.P Zubova, E.V Raetskaya, V.I. Uskov // Journal of Mathematical Sciences. 2021. - Vol. 255, № 5. - P. 640-652. - DOI:https://doi.org/10.1007/s10958-021-05401-7.
28. Zubova, S.P. Reshenie polugranichnoy zadachi dlya vyrozhdennogo uravneniya v chastnyh proizvodnyh / S.P. Zubova, E.V. Raeckaya // Differencial'nye uravneniya. - 2022. - T. 58, № 9. - S. 1193-1204. - DOI:https://doi.org/10.31857/S0374064122090035.