Moskva, Moscow, Russian Federation
Russian Federation
The Department of Engineering Graphics of the RTU MIREA, has been holding the All-Russian Student Competition "Innovative Developments" as part of the All-Russian Student Olympiad in Descriptive Geometry, Engineering and Computer Graphics since 2008. This competition is a stage in the concept of a methodological system for the development of the student's intellectual abilities. The article describes the original system for evaluating works at the competition, the principle of forming the jury, the principles for selecting works for the competition. The goals of the competition were announced, namely: approbation and presentation of new ideas, including in the field of graphic disciplines; development of modern information technologies by students; development of cooperation between teams of university departments and production teams. The criteria for comparing past competitions with each other are described, the methodology for assessing the success of the competition, the success of competitions is analyzed by year. From 2008 to 2022 inclusive representatives of 24 universities presented 96 works for the competition. The article gives the titles, authors and scientific supervisors of the best projects - winners and prize-winners of competitions who scored 200 or more points, ranked by the points scored for the places taken by the students - participants in the competitions. The geography of participating universities is analyzed, universities are ranked by total achievements. There is a positive trend in the number of works submitted to the competition. It is noted that some works became the first step in serious scientific research, for example, “Spatial fractals” by L.A. Zhikharev, later became the topic of his dissertation, “Reflections from curvilinear mirrors in space and on a plane” by O.S. Suntsov are currently one of the registered areas of research at the department.
competition, project, innovative developments, geometry, fractal, spatial fractals, CAD, 3D model, engines, fireball, geometric places
1. Bojkov A.A., Gudaev I.I. Ob odnom sposobe sozdaniya besshovnykh fraktal'nykh patternov dlya dizayna na osnove mnogomernogo podkhoda [About one way to create seamless fractal patterns for design based on a multidimensional approach]. Innovatsionnyye tekhnologii v inzhenernoy grafike: problemy i perspektivy. Sb. tr. Mezhdunarodnoy nauch.-prakt. konf. 20 aprelya 2018 goda Brest, Respublika Belarus' Novosibirsk, Rossiyskaya Federatsiya. Brest: BrGTU [Innovative technologies in engineering graphics: problems and prospects: Sat. tr. International scientific and practical. conf. April 26, 2022 Brest, Republic of Belarus Novosibirsk, Russian Federation]. Brest, BrGTU. 2021, 281 p. 1 CD-ROM. (in Russian)
2. Bojkov A.A., Belim S.S., Korovina A.V. Ob odnom podkhode k ispol'zovaniyu parametrizovannykh modeley i parametricheskikh CAD-sistem [On one approach to the use of parametric models and parametric CAD systems]. Sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Innovatsionnyye tekhnologii v inzhenernoy grafike: problemy i perspektivy» [Proceedings of the International Scientific and Practical Conference «Innovative Technologies in Engineering Graphics: Problems and Prospects»]. 2020, pp. 37-41. (in Russian)
3. Bojkov A.A., Belim S.S., Korovina A.V. O postroyenii fazovykh diagramm dvukhkomponentnykh sistem v SAPR «Kompas-3D» [On the construction of phase diagrams of two-component systems in CAD «Compass-3D»]. Zhurnal tekhnicheskikh issledovaniy [Journal of Technical Research]. 2020, V. 6, I. 2, pp. 9-14. (in Russian)
4. Bojkov A.A., Orlova E.V., CHernova A.V., SHkilevich A.A. O sozdanii fraktal'nykh obrazov dlya dizayna i poligrafii i nekotorykh geometricheskikh obobshcheniyakh, svyazannykh s nimi [On the creation of fractal images for design and printing and some geometric generalizations associated with them]. Problemy kachestva graficheskoy podgotovki studentov v tekhnicheskom vuze: traditsii i innovatsii [Problems of quality graphic preparation of students in a technical college: tradition and innovation]. PGTU Publ., 2019, V. 1, pp. 325-339. (in Russian)
5. Vyshnepol'skij V.I., Kadykova N.S., Prokopov N.I. Vserossijskij studencheskij konkurs «Innovacionnye razrabotki » [Panrussian student competition «Innovative developments»]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 69-86. DOI:https://doi.org/10.12737/22845. (in Russian)
6. Vyshnepol'skij V.I., Dallakjan O.L., Zavarihina E.V. Geometricheskie mesta tochek,ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. CHast' 2 [Geometric locations of the points equally spaced from two given geometric figures. Part 2]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 15-23. DOI:https://doi.org/10.12737/22842. (in Russian)
7. Vyshnepol'skij V.I., Kirshanov K.A., Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. CHast' 3 [Geometric locations of the points equally spaced from two given geometric figures. Part 3]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 4, pp. 3-19. DOI:https://doi.org/10.12737/article_5c21f207bfd6e4.78537377. (in Russian)
8. Vyshnepol'skij V.I., Zavarihina E.V., Pekh D.S. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. chast' 4: geometricheskie mesta
9. tochek, ravnoudalennyh ot dvuh sfer [Geometric points of points equidistant from two given geometric shapes. Part 4: geometric points of points equidistant from two spheres].
10. Geometriya i grafika [Geometry and Graphics]. 2021, V. 9, I. 3, pp. 12-29. DOI:https://doi.org/10.12737/2308-4898-2021-9-3-12- 29 (in Russian)
11. Vyshnepol'skij V.I., Zavarihina E.V., Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. chast' 5: geometricheskie mesta tochek, ravnoudalennyh ot sfery i ploskosti [Geometric locus of points equidistant from two given geometric figures. part 5: locus of points equidistant from sphere and plane]. Geometriya i grafika [Geometry and Graphics]. 2021, V. 9, I. 4, pp. 22-34. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-22-34. (in Russian)
12. Egiazaryan K.T., Vyshnepol'skij V.I. Issledovanie geometricheskih mest tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur [Study of geometric locations of points equidistant from two specified geometric shapes]. Sbornik materialov 31-j Vserossijskoj nauchno-prakticheskoj konferencii po graficheskim informacionnym tekhnologiyam i sistemam [Collection of materials of the 31st All-Russian scientific-practical conference on graphic information technologies and systems]. Nizhnij Novgorod. 2021, pp. 118-123. DOI:https://doi.org/10.46960/43791586_2021_118. (in Russian)
13. Yefremov A.V., Vereshchagina T.A., Igonina A.A., Kadykova N.S., Rustamyan V.V. Analiz trayektorii dvizheniya tochek analogov treugol'nika Relo, vrashchayemykh v ramkakh kvadratnoy i rombovidnoy form [Analysis of the trajectory of the points of analogues of the Reuleaux triangle, rotated within the framework of square and rhomboid shapes]. Zhurnal yestestvennonauchnykh issledovaniy [Journal of Natural Science Research]. 2021, V. 6, I. 2, pp. 31-37. (in Russian)
14. Zhiharev L.A. Obzor geometricheskikh sposobov povysheniya udelʹnoy prochnosti konstruktsiy: topologicheskaya optimizatsiya i fraktalʹnyye struktury [Overview of GeometricMethods for Increasing the Specific Strength of Structures: Topological Optimization and Fractal Structures]. Geometriya i grafika [Geometry and Graphics]. 2021, V. 9, I. 4, pp. 46-62. DOI:https://doi.org/10.12737/2308-4898-2022-9-4-46-62. (in Russian)
15. Zhiharev L.A. Obobshchenie na tryohmernoe rostranstvo fraktalov Pifagora i Koha. Chast' 1. [A generalization to three-dimensional space of fractal Pythagoras and Koch. Part 1]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 24-37. DOI:https://doi.org/10.12737/14417. (in Russian)
16. Zhiharev L.A. Fraktal'nye grafiki effektivnosti optimizacii topologii v reshenii problemy zavisimosti prochnosti ot setki [Fractal graphs of topology optimization efficiency in solving the problem of strength dependence on the grid]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 3, pp. 25-35. DOI:https://doi.org/10.12737/2308-4898-2020-25-35. (in Russian)
17. Zhiharev L.A. Fraktal'nye razmernosti [Fractal dimensions]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 33-48. DOI:https://doi.org/10.12737/article_5bc45918192362.77856682 (in Russian)
18. Suncov O.S., ZHiharev L.A. Issledovanie otrazheniya ot krivolinejnyh zerkal na ploskosti v programme Wolfram Mathematica [Investigation of reflection from curved mirrors on a plane in the Wolfram Mathematica program]. Geometriya i grafika [Geometry and graphics]. 2021, V. 2, pp. 29-45. DOI:https://doi.org/10.12737/2308-4898-2021-9-2-29-45. (in Russian)