Internal friction investigation of the natural and compressed birch (Betula pendula Roth) wood
Abstract and keywords
Abstract (English):
A method is proposed for approximating of the internal friction of wood based on the Boltzmann superposition principle, which describes the complex viscoelastic behavior of the system by a linear combination of components. Prepared samples of natural and modified wood, sawn from the stem part of drooping birch (Betula pendula ROTH) trees growing in the Khlevensky Forestry (52.184130, 39.110463, ASL 157m), were exposed to radial and tangential directions with ultrasound (frequency 24.5 kHz, exposure 0 -20 minutes, step 5 minutes) and pulsed magnetic field (strength - 0.3 T, exposure 0-2 minutes, step 0.5 minutes). Next, the internal friction of the samples was studied on an experimental setup using the logarithmic damping decrement based on free-bending vibrations. The absolute values of the dimensionless viscosity coefficient κ included in the model as the main structural parameter for samples of natural and modified wood were obtained at a significance level of p=0.95: for moisture content from 4.3 to 15; for ultrasound 4.6 to 20; for a pulsed magnetic field from 3.6 to 7.7. The absolute values of the dimensionless scaling factors μ for natural and modified wood samples range from 1.92 to 3.91. The highest approximation value was achieved when testing natural wood samples of silver birch (Betula pendula ROTH): R2=0.98 for the radial direction, the influence of the humidity factor, and R2=0.85 for the tangential direction, the influence of the ultrasonic factor, as well as for a sample of modified wood brand "Destam" in the radial direction R2=0.96, the influence of the factor of the pulsed magnetic field.

Keywords:
internal friction of wood, natural and modified wood birch (Betula pendula Roth), Boltzmann superposition principle, modification, ultrasound, magnetic field
Text
Publication text (PDF): Read Download
References

1. Cai C., Zhou F. Sorption characteristic of thermally modified wood at varying relative humidity. Forests. 2022; 13(10):1687.DOI:https://doi.org/10.3390/f13101687

2. Ali M. R., Abdullah U. H. Hydrothermal modification of wood: A review. Polymers.2021; 13(16): 2612. DOI: https://doi.org/10.3390/polym13162612.

3. Romano A., Cappellin L. Exploring volatile organic compound emission from thermally modified wood by PTR-ToF-MS. Analyst. 2022;147 (22): 5138-5148. DOI: http://dx.doi.org/10.1039/D2AN01376B

4. Wang Y., Zhang R. Improvement on dimensional stability and mold resistance of wood modified by tannin acid and tung oil.Holzforschung. 2022; 76 (10): 929-940. DOI: https://doi.org/10.1515/hf-2022-0062

5. Hu J. Manufacturing and characterization of modified wood with in situ polymerization and Cross-Linking of Water-Soluble Monomers on Wood Cell Walls. Polymers. 2022; 14(16):3299. DOI: https://doi.org/10.3390/polym14163299

6. Bytner O., Laskowska A. Evaluation of the dimensional stability of black poplar wood modified thermally in nitrogen atmosphere. Materials. 2021; 14(6): 1491. DOI: http://dx.doi.org/10.3390/ma14061491

7. Shukla S. R. Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis.MaderasCiencia y Tecnologia. 2019; 21(4): 433-446. DOI: http://dx.doi.org/10.4067/S0718-221X2019005000401

8. Youming D., Silong G. The effect mechanism and properties of poplar wood cross-linking modified with polyols and polycarboxylic acid. Wood Material Science & Engineering. 2023; 1(18): 1-11. DOI: http://dx.doi.org/10.1080/17480272.2023.2167110

9. Mohebby B., Broushakian V. Moisture induced stresses in cross laminated timber (CLT) made from hydrothermally modified wood. Eur.J.WoodProd. 2022; 80: 1087-1094. DOI: https://doi.org/10.1007/s00107-022-01836-0

10. Thais M.B., Glaucileide F. Resistance to biodeterioration of thermally modified Eucalyptus grandis and Tectonagrandis short-rotation wood. Wood Material Science & Engineering. 2022; 11 (26): 1-8. DOI: http://dx.doi.org/10.1080/17480272.2022.2150985

11. Plaza N.Z.,Pingali S.V., Ibach R.E. Nanostructuralchanges correlated to decay resistance of chemically modified wood fibers. Fibers. 2022; 10(5):40. DOI: https://doi.org/10.3390/fib10050040

12. Kurkowiak K., Wu M., Emmerich L. Fire-retardant properties of wood modified with sorbitol, citric acid and a phosphorous-based system. Holzforschung.2023; 77(1): 38-44. DOI: https://doi.org/10.1515/hf-2022-0114

13. Sikora A., Hajkova K., Jurczykova T. Degradation of chemical components of thermally modified robiniapseudoacacia L. wood and Its effect on the change in mechanical properties. International Journal of Molecular Sciences. 2022; 23(24):15652. DOI: https://doi.org/10.3390/ijms232415652

14. Nisrina P.H., Resa M., Istie S.R. Surface characterization and paint bonding quality on chemically and thermally modified short rotation teak wood. International Wood Products Journal. 2022; 11 (8): 1-8. DOI: http://dx.doi.org/10.1080/20426445.2022.2138908

15. Cambazoglu M., Tomak E.D., Ermeydan M.A. Natural weathering of spruce wood chemically modified by reused-caprolactone solution. Coloration Technology. 2022; 10 (4): 17-28. DOI https://doi.org/10.1111/cote.12645

16. Miklecic J., Loncaric A., Veselicic N.,Jirous-Rajkovic V. Influence of wood surface preparation on roughness, wettability and coating adhesion of unmodified and thermally modified wood. Drvnaindustrija.2022; 73 (3): 261-269. DOI: https://doi.org/10.5552/drvind.2022.0016

17. Juncheng L., Wei W., Haolin W. Prediction of thermal modified wood color change after artificial weathering based on IPSO-SVM model.Research Square.2022; 11: 1-17. DOI: http://dx.doi.org/10.21203/rs.3.rs-2327397/v1

18. Kymalainen M., Domeny J., Rautkari L. Moisture sorption of wood surfaces modified by one-sided carbonization as an alternative to traditional facade coatings. Coatings. 2022; 12(9):1273. DOI: https://doi.org/10.3390/coatings12091273

19. Buchelt B., Kruger R.,Wagenfuhr, A. The vibrational properties of native and thermally modified wood in dependence on its moisture content. Eur. J. Wood Prod. (2023); 1(13): 1-8. DOI: https://doi.org/10.1007/s00107-022-01919-y

20. Chen X., Ge-Zhang S., Han Y. Ultraviolet-assisted modified delignified wood with high transparency. Applied Sciences. 2022; 12(15):7406. DOI: https://doi.org/10.3390/app12157406

21. Liu Y., Avramidis S. Air permeability of thermally modified hemlock wood. Les/Wood.2022; 71(2): 25-30. DOI: https://doi.org/10.26614/les-wood.2022.v71n02a01

22. Tomov G. Reduction of Electricity Consumption in the Production of Thermally Modified Wood. 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria. 2022;1:1-6.DOI: http://dx.doi.org/10.1109/SIELA54794.2022.9845726

23. Bonfatti Junior E.A., Lengowski E.C., Nisgoski S. Properties of thermally modified woods by a Brazilian process. Environmental Sciences Proceedings. 2022; 22(1):24. DOI: https://doi.org/10.3390/IECF2022-13042

24. Aytin A., Cakicier, N. Weathering’s effect on color and roughness in some heat-treated wood species with modified water-based varnish. BioResources.(2022); 17(4): 6358-6376. DOI: http://dx.doi.org/10.15376/biores.17.4.6358-6376

25. Roberts G., Campbell S., Graham A. The environmental and social impacts of modified wood production: effect of timber sourcing. International Wood Products Journal. 2022; 13(4): 236-254. DOI: http://dx.doi.org/10.1080/20426445.2022.2117923

26. Mamonova M., Ciglian D., Reinprecht L. SEM analysis of glued joints of thermally modified wood bonded with PUR and PVAc. Glues Materials. 2022; 15(18):6440. DOI: https://doi.org/10.3390/ma15186440

27. Chen Y., Wang W., Li N. Prediction of the equilibrium moisture content and specific gravity of thermally modified wood via an Aquila optimization algorithm back-propagation neural network model.BioResources. 2022; 17(3): 4816-4836. DOI: http://dx.doi.org/10.15376/biores.17.3.4816-4836 DOI:https://doi.org/10.15376/biores.17.3.4816-4836

28. Haftkhani A.R., Abdoli F., Rashidijouybari I. Prediction of water absorption and swelling of thermally modified fir wood by artificial neural network models. Eur. J. Wood Prod. 2022; 80: 1135-1150. DOI: https://doi.org/10.1007/s00107-022-01839-x

29. Nasir V., Nourian S., Avramidis S., Cool J. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung. 2019; 73(9), 827-838. DOI: http://dx.doi.org/10.1515/hf-2018-0289

30. Golovin, I. S., Cordero, F. Internal Friction and Mechanical Spectroscopy (IFMS-19). Concluding Remarks. Journal of Alloys and Compounds. 2023; 946, 169375. DOI: https://doi.org/10.1016/j.jallcom.2023.169375.

31. Patent № 2712521 C1 Rossiyskaya Federaciya, MPK B27K 5/06. Sposob polucheniya modificirovannoy drevesiny : № 2019103517 : zayavl. 07.02.2019 :opubl. 29.01.2020 / V. A. Shamaev, I. N. Medvedev, D. A. Parinov, O. F. Shishlov ; zayavitel' i patentoobladatel' Obschestvo s ogranichennoy otvetstvennost'yu "Modifikaciya" - 8 s. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=42449800


Login or Create
* Forgot password?