T he work objective is to estimate the electromagnetic environment on the roof where a mobile system base station aerial is installed. The problem arises during maintenance, repair, and assembly operations for antenna-feeder devices. The evaluation problem for ecological assessment of the electromagnetic environment at a standard height of two meters above the roof is solved with the computational prediction method. Two strict models are used for electrodynamic simulation of energy flux density, i.e. a two ray model which describes the plane electromagnetic wave diffraction on the flat perfectly conducting roof surface, and finite models of the roof are described with the canonical problem on a wedge of infinite extent. The difference between the developed model and the known ones lies within the research possibility not only in the computational points but within a whole computational plane. In the simulation process, antenna emission characteristics can be set in a number of ways including those obtained from the radiation object specifications, as it is proposed in a well-known technique. The simulation results for energy flux density distribution in a horizontal plane within the roof space are given. Computational points are placed at the square grid nodes with the period of a quarter wavelength of the transmitter. A physical interpretation of the obtained results is given. A safety conclusion on the human presence on the roof with operating directional cel lular antenna of GSM standard is formulated.
electromagnetic environment monitoring, energy flux density, computational prediction method, wave diffraction on a wedge.
Введение. Задачи, связанные с исследованиями экологической ситуации в той или иной области человеческой дея-
тельности, в последнее время приобрели значительную актуальность, что подтверждается большим числом публика-ций, например, [1–15]. Одним из важных направлений в данной области исследований является мониторинг электро-
магнитной обстановки [3–5]. Важность данной задачи обуславливается рядом факторов. Во-первых, широким приме-
нением радиопередающих устройств, превратившим современные мегаполисы в зоны с высоким уровнем техноген-
ных электромагнитных полей. Во-вторых, невозможностью профилактики электромагнитного загрязнения окружаю-
щей среды, поскольку, как отмечено в работе [3], невозможно очистить эфир от нежелательных излучений радиотех-
нических средств, воздействующих на население.
1. Meskhi, B.C., Solovyev, A.N., Bulygin, Y.I., Koronchik, D.A. Konechno-elementnoe modelirovanie protsessov perenosa zagryazneniy v proizvodstvennoy srede s uchyetom zavikhreniy vozdushnykh potokov. [Finite-element modeling of contamination mass transfer process in technological environment with regard to airflow turbulence] Vestnik of DSTU, 2012, vol.12, no. 6(67), pp.10-16 (in Russian).
2. Mishugova, G.V. Modelirovaniye protsessa zagryazneniya atmosfery. [Air contamination process simulation] Vestnik of DSTU, 2012, vol.12, no. 8 (69), pp.12-17 (in Russian.)
3. Dovgusha, V.V., Tihonov, M.N., Dovgusha, L.V. Vliyanie estestvennykh i tekhnogennykh elektromagnitnykh poley na bezopasnost´ zhiznedeyatel´nosti. [Natural and technological electromagnetic fields influence on safety of vital activity.] Human Ecology, 2009, no. 12, pp. 3-9 (in Russian).
4. Spodobayev, Y.M., Kubanov, V.P. Osnovy electromagnitnoy ekologii. [Principles of electromagnetic ecology] Moscow: Radio i svyaz’, 2000, 240 p. (in Russian).
5. Elyagin, S.V., Dementyev V.E. Analiz plotnosti potoka energii (PPE) vblizi antenn standarta GSM. [Analysis of energy flux density near aerials of GSM standard] Vestnik Ul’yanovskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, no. 3 (47), pp. 29-33 (in Russian).
6. Elyagin, S.V. Analyz plotnostey potoka moshchnosti vblizi izluchayushchikh antenn. [Measurement of density of power flux with the help of a mobile measurement terminal.] Vestnik Ul’yanovskogo gosudarstvennogo tekhnicheskogo universiteta, 2008, no. 4, pp. 51-54 (in Russian).
7. Maslakov, M.D., Lovchikov V.A., Palitsyn, A.B. Problemy minimizatsii riskov vozdeystviya elektromagnitnykh poley diapazona radiochastot 10 kGts do 300 GGts na obsluzhivayushchiy personal. [Problems of minimization of risk of influence of electro-magnetic fields by frequency from 10 kHz to 300 GHz on attendants.] Problems of Technosphere Risk Management, 2012, vol. 21, no. 1, pp. 116-120 (in Russian).
8. Gurevich, E.S., Popova, T.S., Moiseyenko, O.A. Aktual’nye zadachi sanitarno-epidemiologicheskikh eskpertiz razmeshcheniya bazovykh stantsiy besprovodnoy radiotelefonnoy svyazi. [Actual problems of sanitary-epidemiological expertise base stations of the wireless radiotelephone communication] Health. Medical ecology. Science. 2014, no. 4(58), pp. 80-83. Available at: httpd://yadi.sk/i/vX4p-x7mZKuuU (accessed: 09.11.14) (in Russian).
9. Fuller, M., Dobson, J. On the significance of the constant of magnetic field sensitivity in animals. Bioelectromagnetics, 2005, vol. 26, no. 3, pp. 234-237.
10. Kusuma, A.H., et al. A new law SAR antenna structure for wireless handset applications. PIERS, 2011, vol. 112, pp. 23-40. Available at: http://www.jpier.org/PIER/pier112/02.10101802.pdf. (accessed: 09.11.2014)
11. Hirata, A., Sugiyama, H., Fujiwara, O. Estimation of core temperature elevation in humans and animals for wholebody averaged SAR. PIERS, 2009, vol. 99, pp. 53-70. Available at : http://www.jpier.org/ PIER/pier99/04.09101603.pdf. (accessed: 09.11.2014).
12. Islam, M.T., et al. Analysis of materials effects on radio frequency electromagnetic fields in human head. PIERS, 2012, vol. 128, pp.121-136. Available at : http://www.jpier.org/PIER/pier128/ 08.12030105.pdf. (accessed: 09.11.2014).
13. Li, Chung-Huan, et al. Mechanisms of RF electromagnetic field absorption in human hands and fingers. IEEE Trans. On Microwave Theory and Techniq. 2012, vol.60, no. 5, pp. 2267-2276.
14. Mat, M.H., et al. Correlation analysis on the specific absorption rate (SAR) between metallic spectacle and pins exposed from radiation sources. PIERS Proc., Kuala Lumpur, MALAYSIA, March 27-30, 2012, pp.452-455.
15. Pendry, J.B., Schuring, D., Smith, D.R. Controlling electromagnetic fields. Science, 2006, vol. 312, no. 6, pp. 1780-1782.
16. MUK 4.3-1167-02. Metodicheskie ukazaniya po opredeleniyu plotnosti potoka moshchnosti elektomagnitnogo polya v mestakh gazmeshcheniya radiosredstv, rabotayushchikh v diapazone chastot 700 MGts - 30 GGts. [Methodical guidelines for estimation of power flux density in locations of radio facilities of 700 MHz to 30 GHz]. Appr. by Chairman of State Committee for Sanitary and Epidemiological Supervision on October, 7, 2002. Available at : http://bestpravo.ru/rossijskoje/soinstrukcii/ t5r.htm. (accessed: 12.11.14) (in Russian).
17. SanPin 2.1.8/2.4.1383-03. Gigienicheskiye trebovaniya k razmeshcheniyu i ekspluatatsii peredayushchikh radiotekhnicheskikh ob’’yektov. [Hygienic requirements to placement and operation of radio transmitting facilities.] Appr. by Сhief public health official of Russia on June 9, 2003. Reg. no. 4710. Effective as of June 30, 2003 (in Russian).
18. Gigienicheskie normativy GN 2.1.8. / 2.2.4.019.Vremennye dopustimye urovni (VDU) vozdeystviya elektromagnitnykh izlucheniy, sozdavaemykh sistemami sotovoy svyazi. [Health standards GN 2.1.8./2.2.4.019-94.Tentative maximum permissible level for emectromagnetic radiation from cellular systems.] Available at: http://www.docload.ru/Basesdoc/5/5222/index.htm. (accessed: 20.11.14) (in Russian).
19. Programma SANZONE. [SANZONE application.] Available at: http://www.ing-tv.ru/index/sanzone/0-53. (accessed: 20.12.14).
20. Aizenberg, G.Z., et al., Aizenberg, G.Z., ed. Korotkovolnovye antenny. [High-frequency antennae.] Moscow : Radio i svyaz’, 1985, 536 p. (in Russian).
21. Bazovoe antenno-fidernoe oborudovanie. [Basic antenna-feeder hardware equipment.] Available at : http://www.radial.ru/catalog/antennas/vertical/a3_cdma/ (accessed: 14.11.14) (in Russian).
22. Pimenov, Y.V. Lineynaya makroskopicheskaya elektrodinamika. Vvodniy kurs dlya radiofizikov i inzhenerov. [Linear macroscopic electrodynamics. Introductory course for radio physicists and engineers.] Dolgoprudniy : Intellect, 2008, 536 p. (in Russian).
23. Zakharyev, L.N., Lemanskiy, A.A., Shcheglov, K.S. Teoriya izlucheniya poverhnostnykh antenn. [Radiation theory for aperture antennas.] Moscow : Sovetskoye radio, 1969, 230 p. (in Russian).