IONOSPHERIC LONGITUDINAL VARIABILITY IN THE NORTHERN HEMISPHERE DURING MAGNETIC STORMS IN MARCH 2012 FROM IONOSONDE AND GPS/GLONASS DATA
Abstract and keywords
Abstract (English):
A comprehensive study of spatio-temporal variations of geomagnetic, ionospheric, and atmospheric parameters in the middle and high latitudes of the Northern Hemisphere during a series of magnetic storms in March 2012 has been expanded by including vertical total electronic content (TEC) data from measurements at the chains of dual-frequency phase receivers GPS/GLONASS in the analysis. The features of longitudinal variations in ionosphere ionization over mid-latitude Eurasia, found earlier from vertical sounding data, are confirmed by vertical TEC data. We emphasize the complex physics of the long magnetically disturbed period in March 2012 with switching between positive and negative effects of an ionospheric storm during the same magnetic storm phases for spaced mid-latitude regions of the Eastern Hemisphere. Such changes in the ionospheric storm effects might have been caused by the superposition of competing processes in the mid-latitude region of the Eastern Hemisphere due to variations in the thermospheric composition, thermospheric winds, and large-scale electric fields affecting ionospheric ionization. We have observed significant differences in the nature of the ionospheric ionization reaction between the Eastern and Western hemispheres to the prolonged geomagnetic disturbance in March 2012. According to TEC data, there was an effect of reduced ionization of the ionosphere at longitudes of the Western Hemisphere, unlike the Eastern one. The effect of a negative ionospheric storm was caused by the formation of vast areas of atmospheric gas with a reduced density ratio [O]/[N2] over the mid-latitude region of the Western Hemisphere in the zone of maximum penetration of geomagnetic disturbances from high latitudes to middle latitudes. According to the INTERMAGNET magnetometer chain data for the analyzed period of magnetic storms on March 7–20, 2012, at midlatitudes of the Northern Hemisphere the maximum geomagnetic field variations were observed in the Western Hemisphere.

Keywords:
chain of GPS/GLONASS receivers, ionosonde chain, ionospheric and thermospheric disturbances, geomagnetic field variations, geomagnetic storm
Text
Text (PDF): Read Download
References

1. Afraimovich E.L. Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli (GPS-monitoring of the Earth upper atmosphere). Irkutsk: GU NTs VSNTs SO RAMN, 2006, pp. 90-94. (In Russian).

2. Anagnostopoulos G.C., Menesidou S.-A.I., Efthymiadis D.A. The March 2012 heat wave in Northeast America as a possible effect of strong solar activity and unusual space plasma interactions. Atmosphere. 2022, vol. 13, iss. 6, p. 926. DOI:https://doi.org/10.3390/atmos13060926.

3. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity. Radio Sci. 2005, vol. 40, RS5009. DOI:https://doi.org/10.1029/2004RS003179.

4. Astafyeva E.I. Dayside ionospheric uplift during strong geomagnetic storms as detected by the CHAMP, SAC-C, TOPEX and Jason-1 satellites. Adv. Space Res. 2009, vol. 43, pp. 1749-1756. DOI:https://doi.org/10.1016/j.asr.2008.09.036.

5. Balan N., Otsuka Y., Tsugawa T., Miyazak, S., Ogawa T., Shiokawa K. Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity. Earth, Planets and Space. 2002, vol. 54, pp. 71-79. DOI:https://doi.org/10.1186/BF03352423.

6. Belehaki A., Kutiev I., Marinov P., Tsagouri I, Koutroumbas K., Elias P. Ionospheric electron density perturbations during the 7-10 March 2012 geomagnetic storm period. Adv. Space Res. 2017, vol. 59, pp. 1041-1056. DOI:https://doi.org/10.1016/j.asr.2016.11.031.

7. Bilitza D. Evaluation of the IRI-2007 model options for the topside electron density. Adv. Space Res. 2009, vol. 44, no. 6, pp. 701-706. DOI:https://doi.org/10.1016/j.asr.2009.04.036.

8. Buonsanto M.J. Ionospheric storms - a review. Space Sci. Rev. 1999, vol. 88, pp. 563-601.

9. Burešová D., Laštovička J., de Franceschi G. Manifestation of Strong Geomagnetic Storms in the Ionosphere above Europe / In: Lilensten J. (ed.), Space Weather Springer. 2007, pp. 185-202.

10. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., Stepanov A.E., et al. Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019, vol. 16, no. 5, pp. 336-347. DOI:https://doi.org/10.21046/2070-7401-2019-16-5-336-347. (In Russian).

11. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S. Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the ionosonde and GPS/GLONASS data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, vol. 17, no. 4, pp. 269-281. DOI:https://doi.org/10.21046/2070-7401-2020-17-4-269-281. (In Russian).

12. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations. Adv. Space Res. 2021a, vol. 67, no. 2, pp. 762-776. DOI:https://doi.org/10.1016/j.asr.2020.10.028.

13. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., et al. Longitudinal variations in the response of the mid-latitude ionosphere of the Northern Hemisphere to the October 2016 geomagnetic storm using multi-instrumental observations. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021b, vol. 18, no. 5, pp. 305-317. DOI:https://doi.org/10.21046/2070-7401-2021-18-5-305-317. (In Russian).

14. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., et al. Studying the response of the mid-latitude ionosphere of the Northern Hemisphere to magnetic storms in March 2012. Solar-Terr. Phys. 2022a, vol. 8, iss. 4, pp. 44-54. DOI:https://doi.org/10.12737/stp-84202204.

15. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S. Response of the ionosphere - thermosphere system over the midlatitude region of Eurasia to geomagnetic storms in March 2012. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022b, vol. 19, no. 5, pp. 303-315. DOI:https://doi.org/10.21046/2070-7401-2022-19-5-303-315. (In Russian).

16. Christensen A.B., Paxton L.J., Avery S., Craven J., Crowley G., Humm D.C., et al. Initial observations with the Global Ultraviolet Imager (GUVI) on the NASA TIMED satellite mission. J. Geophys. Res. 2003, vol. 108, no. A12, p. 1451. DOI:https://doi.org/10.1029/2003JA009918.

17. Danilov A.D. Long-term trends of foF2 independent on geomagnetic activity. Ann. Geophys. 2003, vol. 21, no. 5, pp. 1167-1176.

18. Danilov A.D. Response of region F to geomagnetic disturbances (review). Heliogeophysical research. 2013, no. 5, pp. 1-33. (In Russian).

19. Dudok de Wit T., Watermann J. Solar forcing of the terrestrial atmosphere. Comptes Rendus Geoscience. 2009, vol. 342, no. 4-5, pp. 259-272. DOI:https://doi.org/10.1016/j.crte.2009.06.001.

20. Habarulema J.B., Katamzi Z.T., Yizengaw E. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions. J. Geophys. Res. Space Physics. 2015, vol. 120, pp. 6914-6929. DOI:https://doi.org/10.1002/2015JA021066.

21. Habarulema J.B., Katamzi Z.T., Yizengaw E., Yamazaki Y., Seemala G. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale. Geophys. Res. Lett. 2016, vol. 43, pp. 6678-6686. DOI:https://doi.org/10.1002/2016GL069740.

22. Habarulema J.B., Okoh D, Bergeot N., Burešová D., Matamba T., Tshisaphungo M., et al. Interhemispheric comparison of the ionosphere and plasmasphere total electron content using GPS, radio occultation and ionosonde observations. Adv. Space Res. 2021, vol. 68, iss. 6, pp. 2339-2353. DOI:https://doi.org/10.1016/j.asr.2021.05.004.

23. Huang C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 496-501. DOI:https://doi.org/10.1029/2012JA018118.

24. Klimenko M.V., Klimenko V.V, Ratovsky K.G., Goncharenko L.P., Fagundes R.R., de Jesus R., de Abreu A.J., Vesnin A.M. Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9-14 September 2005. Radio Sci. 2011, RS0D03. DOI:https://doi.org/10.1029/2010RS004590.

25. Klimenko M.V., Klimenko V.V., Bessarab F.S., Zakharenkova I.E., Kotova D.S., Nosikov I.A., et al. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and radiowave propagation. I. Ionospheric effects. Geomagnetism and Aeronomy. 2015a, vol. 55, no. 6, pp. 744-762. DOI:https://doi.org/10.1134/S0016793215050072.

26. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Cherniak Iu.V. The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results. Adv. Space Res. 2015b, vol. 55, no. 8, pp. 2077-2085. DOI:https://doi.org/10.1016/j.asr.2014.06.027.

27. Kosov A.S., Chernyshov A.A., Mogilevsky M.M., Chugunin D.V., Korogod V.V., Munitsyn V.A., Dolgonosov M.S., Skulachev D.P. Space Experiment on Measuring Ionospheric Signal Delay RWIS (Radio Waves Ionosphere Sensing). Issledovanie Zemli iz kosmosa. 2018, no. 6, pp. 13-23. DOI:https://doi.org/10.31857/S020596140003364-1. (In Russian).

28. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera. M.: Nauka Pabl., 1984, 129 p. (In Russian).

29. Krypiak-Gregorczyk A. Ionosphere response to three extreme events occurring near spring equinox in 2012, 2013 and 2015, observed by regional GNSS-TEC model. J. Geodesy. 2019, vol. 93, pp. 931-951. DOI:https://doi.org/10.1007/s00190-018-1216-1.

30. Laštovička J. Monitoring and forecasting of ionospheric space weather effects of geomagnetic storms. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 697-705. DOI:https://doi.org/10.1016/S1364-6826(02)00031-7.

31. Liou K., Newell P.T., Anderson B.J., Zanetti L., Meng C.-I. Neutral composition effects on ionospheric storms at middle and low latitudes. J. Geophys. Res. 2005, vol. 110, p. A05309. DOI:https://doi.org/10.1029/2004JA010840.

32. Loewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14,209-14,213.

33. Matsushita S. A study of the morphology of ionospheric storms. J. Geophys. Res. 1959, vol. 64, no. 3, pp. 305-321. DOI:https://doi.org/10.1029/JZ064i003p00305.

34. Mayr H.G., Volland H. Magnetic storm effects in the neutral composition. Planet. Space Sci. 1972, vol. 20, p. 379.

35. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI:https://doi.org/10.1029/2005RG000193.

36. Polyakov V.M., Shchepkin L.A., Kazimirovsky E.S., Kokourov V.D. Ionosfernye processy [Ionospheric processes]. Novosibirsk: Nauka Pabl., 1968, 535 p. (In Russian).

37. Prol F.S., Hoque M.M., Ferreira A.A. Plasmasphere and topside ionosphere reconstruction using METOP satellite data during geomagnetic storms. J. Space Weather Space Clim. 2021, vol. 11, no. 5. DOI:https://doi.org/10.1051/swsc/2020076.

38. Prölss G.W. Ionospheric F-region storms. In: Volland H. (ed.), Handbook of atmospheric electrodynamics. CRC Press, Boca Raton. 1995, vol. 2, ch. 8, pp. 195-248.

39. Prölss G.W., Werner S. Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms. J. Geophys. Res. 2002, vol. 107, no. A2, p. 1016. DOI:https://doi.org/10.1029/2001JA900126.

40. Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, pp. 1385-1402.

41. Seaton M.J. A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms. J. Atmos. Terr. Phys. 1956, vol. 8, p. 122.

42. Shpynev B.G., Khabituev D.S. Estimation of the plasmasphere electron density and O+/H+ transition height Irkutsk incoherent scatter data and GPS total electron content. J. Atmos. Solar-Terr. Phys. 2014, vol. 119, pp. 223-228. DOI:https://doi.org/10.1016/j.jastp.2014. 01.007.

43. Shpynev B.G., Zolotukhina N.A., Polekh N.M., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., et al. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 93-105. DOI:https://doi.org/10.1016/j.jastp.2017.10.014.

44. Tsurutani B., Mannucci A., Iijima B., Abdu M.A., Sobral J.H.A., Gonzalez W., et al. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 2004, vol. 109, A08302. DOI:https://doi.org/10.1029/2003JA010342.

45. Tsurutani B., Echer E., Shibata K., Verkhoglyadova O., Mannucci A., Gonzalez W., et al. The interplanetary causes of geomagnetic activity during the 7-17 March 2012 interval: a CAWSES II overview. J. Space Weather Space Clim. 2014, vol. 4, no. A02. DOI:https://doi.org/10.1051/swsc/2013056.

46. Verkhoglyadova O.P., Tsurutani B.T., Mannucci A.J., Mlynczak M.G., Hunt L.A., Paxton L.J., Komjathy A. Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 8900-8923. DOI:https://doi.org/10.1002/2016JA022883.

47. Yasyukevich A.S., Yasyukevich Yu.V., Klimenko M.V., Vesnin A.M. Plasmasphere Contribution to Total Electron Content at High and Middle Latitudes. Proc. URSI GASS 2020, Rome, Italy, 29 Aug - 5 Sep 2020. PID6354063. https://www.ursi.org/proceedings/procGA20/papers/PID6354063.pdf.

48. Yasyukevich Yu.V., Mylnikova A.A., Polyakova A.S. Estimating the total electron content absolute value from the GPS/GLONASS data. Res. Phys. 2015, vol. 5, pp. 32-33. DOI:https://doi.org/10.1016/j.rinp.2014.12.006.

49. Yizengaw E., Moldwin M.B., Galvan D., Iijima B.A., Komjathy A., Mannucci A.J. Global plasmaspheric TEC and its relative contribution to GPS TEC. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, pp. 1541-1548. DOI:https://doi.org/10.1016/j.jastp.2008.04.022.

50. URL: http://guvitimed.jhuapl.edu/guvi-galleryl3on2 (accessed March 15, 2023).

51. URL: http://www.intermagnet.org (accessed February 20, 2023).

52. URL: http://wdc.kugi.kyoto-u.ac.jp (accessed February 2, 2023).

53. URL: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed June 2, 2023).

54. URL: https://giro.uml.edu/ionoweb (accessed June 2, 2023).

55. URL: http://ckp-rf.ru/ckp/3056/ (accessed June 2, 2023).

Login or Create
* Forgot password?