Voronezh, Voronezh, Russian Federation
UDK 517.977.1 Общая теория систем управления и управляемость (математическая теория)
UDK 519.63 Численные методы решения дифференциальных уравнений с частными производными
The completely controlled dynamic system in partial derivatives is considered. The problem of constructing state and control functions in an analytical form is solved. The basic method is the cascade decomposition method, which is algorithmically implemented in three stages: forward cascade decomposition, central stage and reverse. The method is based on the properties of the matrix coefficient at the derivative of the control function. Decomposition means a p-step transition from the original system to a reduced system that is quite similar in form to the original one, but with respect to functions from subspaces. The given conditions are reduced in the process of decomposition. When passing to the p-th step system, additional conditions appear on the partial derivatives of the components of the state function. The number of extra conditions at each point is equal to the number of decomposition steps. The matrix coefficient at the derivative of the control function of the reduced system of the last step is surjective. It is this property that determines the presence of the property of complete controllability of the system under consideration. The first stage of decomposition - the stage of the direct move ends with the detection of the number of decomposition steps and the identification of the property of complete controllability. The task of the central stage of decomposition is to construct the state function of the reduced system of the last step in an analytical form. The state function of the reduced system is the basis function that determines the form of the state function of the original system. Necessary and sufficient conditions for the existence of a basis function in polynomial form are established. The minimum degree of the polynomial is also set, which is determined by the number of decomposition steps. Formulas for constructing vector functions - coefficients of the basis function polynomial are given. Formulas for constructing the control function of the reduced system are given in polynomial form. During the last stage of decomposition, the state function of the original system is successively restored in polynomial form. This polynomial function satisfies the given conditions at the start and end points. The final stage is the construction of the control function of the original system in polynomial form as well. While the last stage of decomposition the state function of the original system is successively restored in polynomial form. This polynomial function satisfies the given conditions at the start and end points. The final stage is the construction of the control function of the original system also in polynomial form. A step-by-step algorithm for solving the program control problem for a dynamic system in partial derivatives has been developed. Formulas for constructing state and control functions in polynomial form are given. An example of a three-dimensional dynamical partial differential system with a surjective matrix coefficient in the first-step splitting system is given. The implementation of the proposed algorithm is demonstrated. The state and control functions are constructed in the form of a polynomial of minimum degree.
Partial derivative system, complete controllability, algorithm, cascade decomposition, state, polynomial solution, program control
1. Dzhohadze, O.M. Smeshannaya zadacha s nelineynym granichnym usloviem dlya polulineynogo uravneniya kolebaniya struny / O.M. Dzhohadze // Differencial'nye uravneniya. - 2022. - T. 58, № 5. - S. 591-606. DOI: https://doi.org/10.31857/S0374064122050028; EDN: https://elibrary.ru/CASWYZ
2. Nazarov, S.A. Volny Releya dlya ellipticheskih sistem v oblastyah s periodicheskimi granicami / S.A. Nazarov // Differencial'nye uravneniya. - 2022. - T. 58, № 5. - S. 638-655. DOI: https://doi.org/10.31857/S0374064122050053; EDN: https://elibrary.ru/CBEIJR
3. Zayceva, N.V. Klassicheskie resheniya giperbolicheskih differencial'no-raznostnyh uravneniy v poluprostranstve / N.V. Zayceva // Differencial'nye uravneniya. - 2022. - T. 58, № 5. - S. 628-637. DOI: https://doi.org/10.31857/S0374064122050041; EDN: https://elibrary.ru/CBCDZS
4. Alekseeva, L.A. Obobschennye resheniya stacionarnyh kraevyh zadach dlya bivolnovyh uravneniy / L.A. Alekseeva // Differencial'nye uravneniya. - 2022. - T. 58, № 4. - S. 477-488. DOI: https://doi.org/10.31857/S0374064122040045; EDN: https://elibrary.ru/BZLLWX
5. Konenkov, A.N. Asimptotika fundamental'nyh resheniy parabolicheskih uravneniy s odnoy prostranstvennoy peremennoy / A.N. Konenkov // Differencial'nye uravneniya. - 2022. - T. 58, № 4. - S. 489-497. DOI: https://doi.org/10.31857/S0374064122040057; EDN: https://elibrary.ru/BZPNYP
6. Fudzhita-Yashima, H. Variant ryada Fur'e v sfericheskoy oblasti i ego primenenie k modelirovaniyu ispareniya kapli vody / H. Fudzhita-Yashima // Differencial'nye uravneniya. - 2022. - T. 58, № 2. - S. 204-222. DOI: https://doi.org/10.31857/S0374064122020078; EDN: https://elibrary.ru/XDFUVZ
7. Eliseev, A.G. Development of the Lomov Regularization Method for Singularly Perturbed Caushy Problem and a Boundary Value Problem on the Half-Line for Parabolic Equations with a “Simple” Rational Turning Point / A.G. Eliseev, T.A. Ratnikova, D.A. Shaposhnikova // Differential equations. - 2022. - V. 58, № 3. - P. 314-340. DOI: https://doi.org/10.1134/S0012266122030041; EDN: https://elibrary.ru/QRIUKG
8. Lomov, I.S. Postroenie obobschennogo resheniya smeshannoy zadachi dlya telegrafnogo uravneniya: sekvencial'nyy i aksiomaticheskiy podhody / I.S. Lomov // Differencial'nye uravneniya. - 2022. - T. 58, № 11. - S. 1471-1483. DOI: https://doi.org/10.31857/S0374064122110048; EDN: https://elibrary.ru/MABMSA
9. Belopol'skaya, Ya.S. Veroyatnostnaya interpretaciya zadachi Koshi dlya sistem nelineynyh parabolicheskih uravneniy / Ya.S. Belopol'skaya // Differencial'nye uravneniya. - 2022. - T. 58, № 12. - S. 1606-1623. DOI: https://doi.org/10.31857/S0374064122120032; EDN: https://elibrary.ru/NCBSDL
10. Shishkina, E.L. Edinstvennost' resheniya zadachi Koshi dlya obschego uravneniya Eylera-Puassona_Darbu / E.L. Shishkina // Differencial'nye uravneniya. - 2022. - T. 58, № 12. - S. 1688-1693. DOI: https://doi.org/10.31857/S037406412212010X; EDN: https://elibrary.ru/NCVYIW
11. Elkin, V.I. Application of Dofferential-Geometric Methods of Control Theory to the Theory of Partial Differential Equations. I / V.I. Elkin // Differential equations. - 2021. - V. 57, № 11. - P. 1451-1459. DOI: https://doi.org/10.1134/S0012266121110057; EDN: https://elibrary.ru/SQVHAC
12. Elkin, V.I. Primenenie differencial'no-geometricheskih metodov teorii upravleniya v teorii differencial'nyh uravneniy s chastnymi proizvodnymi / V.I. Elkin // Differencial'nye uravneniya. - 2022. - T. 58, № 11. - S. 1453-1460. DOI: https://doi.org/10.31857/S0374064122110024; EDN: https://elibrary.ru/LZVOCI
13. Stabilization of a System of Unstable Pendulum Discrete and Contininuous Case / P.A. Meleshenko, M.E. Semenov, A.M. Solovyov, K.I. Sypalo // Journal of Computer and Systems Sciences International. - 2022. - V. 61, № 2. - Pp. 135-154. DOI: https://doi.org/10.1134/S1064230722020113; EDN: https://elibrary.ru/GWPIQB
14. Thay, V.N. Stabilizaciya kolebaniya upravlyaemoy mehanicheskoy sistemy s N stepenyami svobody / V.N. Thay // Avtomatika i telemehanika. - 2020. - № 9. - S. 93-104. DOI: https://doi.org/10.31857/S0005231020090044; EDN: https://elibrary.ru/FEBNFW
15. Selyutskiy, Y.D. Controlling the Motion of an Aerodynavic Pendulum with an Elastically Fixed Suspension Point / Y.D. Selyutskiy // Journal of Computer and Systems Sciences International. - 2022. - V. 61, № 3. - Pp. 322-331. DOI: https://doi.org/10.1134/S1064230722030121; EDN: https://elibrary.ru/WVQYTM
16. Balandin, D.V. Stabilization of Linear Dynamic Objects According to the Measured-Error State Under Constraints on the Phase and Control variables / D.V. Balandin, A.A. Fedyukov // Journal of Computer and Systems Sciences International. - 2021. - V. 60, № 5. - P. 673-685. DOI: https://doi.org/10.1134/S1064230721050038; EDN: https://elibrary.ru/AJSYKP
17. Maksimov, V.I. On Guaranted Control of a Linear System of Differential Equations with Incomplete Information About State Coordinates / V.I. Maksimov // Differential equations. - 2021. - V. 57, № 11. - P. 1468-1480. DOI: https://doi.org/10.1134/S0012266121110070; EDN: https://elibrary.ru/LSJKXI
18. Zubova, S.P. Algoritm resheniya lineynyh mnogotochechnyh zadach upravleniya metodom kaskadnoy dekompozicii / S.P. Zubova, E.V. Raeckaya // Avtomatika i telemehanika. - 2017. - № 7. - S. 22-38. EDN: https://elibrary.ru/YTFMGD
19. Raeckaya, E.V. Issledovanie singulyarno vozmuschennoy sistemy upravleniya / E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2018. - T. 23, № 122. - S. 303-307.
20. Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P. Zubova, E.V. Raetskaya // Mathematical Methods in the Applied Sciences. - 2021. - V. 44, № 15. - Pp. 11998-12009. DOI: https://doi.org/10.1002/mma.7130; EDN: https://elibrary.ru/NUYVYN
21. Zubova, S.P. Control problem for dynamical systems with partial derivatives / S.P. Zubova, E.V. Raetskaya, L.H. Trung // Journal of Mathematical Sciences. - 2021. - V. 249, № 6. - Pp. 941-953.
22. Zubova, S.P. Construction of Controls Providing the Desired Output of the Linear Dynamic System derivatives / S.P. Zubova, E.V. Raetskaya // Automation and Remote Control. - 2018. - Vol. 79 (5). - Pp. 774-791. DOI: https://doi.org/10.1134/S0005117918050016; EDN: https://elibrary.ru/UPRTTV
23. Zubova, S.P. Postroenie upravleniya dlya polucheniya zadannogo vyhoda v sisteme nablyudeniya / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2015. - T. 20, № 5. - S. 1400-1404. EDN: https://elibrary.ru/UJFBVX
24. Zubova, S.P. Ob invariantnosti nestacionarnoy sistemy nablyudeniya otnositel'no nekotoryh vozmuscheniy / S.P. Zubova, E.V. Raeckaya, Fam T.K. // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2010. - T. 25, № 6. - S. 1678-1679. EDN: https://elibrary.ru/MVPPHT
25. Zubova, S.P. O polinomial'nyh resheniyah lineynoy stacionarnoy sistemy upravleniya / S.P. Zubova, E.V. Raeckaya, Le Hay Chung // Avtomatika i telemehanika. - 2008. - № 11. - S. 41-47. EDN: https://elibrary.ru/MWHPSP
26. Zubova, S.P. Invariance of a nonstationary observability system under certain perturbations / S.P. Zubova, E.V. Raetskaya // Journal of Mathematical Sciences. - 2013. -V. 188, № 3. - P. 218-226. DOI: https://doi.org/10.1007/s10958-012-1120-9; EDN: https://elibrary.ru/REUKIP
27. Raeckaya, E.V. Algoritm postroeniya upravleniya dinamicheskoy sistemoy v chastnyh proizvodnyh / E.V. Raeckaya // Modelirovanie sistem i processov. - 2022. - T. 15, № 4. - S. 116-127. DOI: https://doi.org/10.12737/2219-0767-2022-15-4-116-127; EDN: https://elibrary.ru/ZLUVUW
28. Zubova, S.P. A Study of the Rigidity Descriptor Dynamical Systems in a Banach Spase / S.P. Zubova, E.V. Raetskaya // Journal of Mathematical Sciences. - 2015. -Vol. 208, Is. 1. - Pp. 131-138. DOI: https://doi.org/10.1007/s10958-015-2430-5; EDN: https://elibrary.ru/WTTYXR
29. Zubova, S.P. Reshenie zadachi Koshi dlya dvuh deskriptornyh uravneniy s neterovym operatorom / S.P. Zubova, E.V. Raeckaya // Doklady akademii nauk. - 2014. - T. 459, № 5. - S. 640-652. DOI: https://doi.org/10.7868/S0869565214350084; EDN: https://elibrary.ru/SYZAEN
30. Zubova. S.P. Degeneraty Property of a Matrix Differential Operator and Applications / S.P. Zubova, E.V. Raetskaya, V.I. Uskov // Journal of Mathematical Sciences. - Vol. 255, № 5, 2021. - P. 640-652. DOI: https://doi.org/10.1007/s10958-021-05401-7; EDN: https://elibrary.ru/FBWBSI
31. Zubova, S.P. Reshenie polugranichnoy zadachi dlya vyrozhdennogo uravneniya v chastnyh proizvodnyh / S.P. Zubova, E.V. Raeckaya // Differencial'nye uravneniya. - 2022. - T. 58, № 9. - S. 1193-1204. DOI: https://doi.org/10.31857/S0374064122090035; EDN: https://elibrary.ru/CHUCTT
32. Zubova, S.P. Issledovanie resheniya zadachi Koshi dlya deskriptornogo uravneniya s vozmuscheniem v pravoy chasti / S.P. Zubova, E. V. Raeckaya // Itogi nauki i tehniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory. - 2021. - T. 195.- S. 51-56. DOI: https://doi.org/10.36535/0233-6723-2021-195-51-56; EDN: https://elibrary.ru/DMHBZE