Tree inventory in urban areas using smartphone
Abstract and keywords
Abstract (English):
In recent years, specialized software for smartphones has been developed to collect biometric indicators of trees, including the use of built-in LiDAR sensors. Mobile applications for the inventory of trees and forest stands are still at the initial stage of their development; therefore, it is necessary to compare the data obtained with their use with the measurement data obtained using traditional methods. For Russia, the technology for determining tree and stand indicators and mapping trees using a smartphone remains untested. Therefore, the aim of the study was to study the possibility of using a smartphone (Arboreal Forest application) to determine tree indicators and map trees using the example of old-growth alley plantings. The study was carried out in old-growth alley plantings of small-leaved lime (Tilia cordata Mill.) on the territory of the former Zootechnical College, located in the Ekimtsevo village, Kologrivsky District, Kostroma Region. Data collection was conducted in July 2023 using 1) the traditional method and 2) the Arboreal Forest application. The accuracy of the results obtained corresponds to the requirements for inventory indicated in the forest inventory instructions. For the object of study, it was revealed that the deviation of the quadratic mean diameter calculated according to the Arboreal Forest data (47.3 cm) from the measurement data with a caliper (48.8 cm) was -3.1% (-1.5 cm), and basal areas -6.18 % or -3.28 m2. Also, compared to the traditional method, Arboreal Forest tends to underestimate trunk diameters (especially for large trees) and, as a result, basal areas. The structure of the tree distribution series by Arboreal Forest tree diameter distribution is generally close to the distribution series obtained by the traditional method. In the future, applications for smartphones can become an effective alternative to traditional methods of tree and stand inventory.

Keywords:
tree inventory, Tilia cordata Mill., stand inventory, Arboreal Forest, iPhone LiDAR, smartphone
Text
Text (PDF): Read Download
References

1. Vasil'eva E.A., Nikolaeva O.N., Trubina L.K. Opyt poderevnoy inventarizacii i kartografirovaniya gorodskih zelenyh nasazhdeniy obschego pol'zovaniya. InterKarto. InterGIS. 2021; 27(3): 274-284. DOI: https://doi.org/10.35595/2414-9179-2021-3-27-274-284.

2. Mullayarova P.I. O neobhodimosti sovershenstvovaniya metodiki inventarizacii gorodskih zelenyh nasazhdeniy. Interekspo Geo-Sibir'. 2017; 4(2): 180-185. - Rezhim dostupa: https://elibrary.ru/item.asp?id=29197832.

3. Lebedev A.V. Changes in the growth of Scots pine (Pinus sylvestris L.) stands in an urban environment in European Russia since 1862. Journal of Forestry Research. 2023; 34: 1279-1287. DOI: https://doi.org/https://doi.org/10.1007/s11676-022-01569-z.

4. Cherdanceva O.A., Zhukova E.A. O vazhnosti sozdaniya edinoy metodiki inventarizacii zelenyh nasazhdeniy istoricheskih sadov v Sankt-Peterburge. Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2018; 222: 6-22. DOI: https://doi.org/10.21266/2079-4304.2018.222.6-22.

5. Mullayarova P.I. O modernizacii suschestvuyuschey metodiki inventarizacii zelenyh nasazhdeniy s uchetom sovremennyh dostizheniy aerokosmicheskih issledovaniy i GIS-tehnologiy. Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2018; 23(1): 132-141. Rezhim dostupa: https://elibrary.ru/item.asp?id=32834054.

6. Zlobin D.V. Inventarizaciya gorodskih zelenyh nasazhdeniy s ispol'zovaniem cifrovyh tehnologiy. Ekologiya: vchera, segodnya, zavtra: Materialy vserossiyskoy nauchno-prakticheskoy konferencii, Groznyy, 30 oktyabrya 2019 goda. Groznyy: Obschestvo s ogranichennoy otvetstvennost'yu "ALEF", 2019: 206-211. Rezhim dostupa: https://elibrary.ru/item.asp?id=41421672.

7. Trubina L.K., Nikolaeva O.N., Mullayarova P.I., Baranova E.I. Inventarizaciya gorodskih zelenyh nasazhdeniy sredstvami GIS. Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2017; 22(3): 107-118. Rezhim dostupa: https://elibrary.ru/item.asp?id=30037544.

8. Alonzo M., Bookhagen B., Roberts D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment. 2014; 148: 70-83. DOI: https://doi.org/10.1016/j.rse.2014.03.018.

9. Kabonen A.V., Ivanova N.V. Ocenka biometricheskih harakteristik derev'ev po dannym nazemnogo lidar i raznosezonnoy aerofotos'emki v iskusstvennyh nasazhdeniyah. Nature Conservation Research. Zapovednaya nauka. 2023; 8(1): 64-83. DOI: https://doi.org/10.24189/ncr.2023.005.

10. Ustinov S.M., Mitrofanov E.M., Ustinov M.V. Issledovanie vozmozhnosti ispol'zovaniya nazemnogo mobil'nogo lazernogo skanera dlya opredeleniya vysot i diametrov derev'ev v sosnovyh nasazhdeniyah. Vestnik Buryatskoy gosudarstvennoy sel'skohozyaystvennoy akademii im. V.R. Filippova. 2023; 1(70): 134-140. DOI: https://doi.org/10.34655/bgsha.2023.70.1.016.

11. Proudman A., Ramezani M., Digumarti S.T., Chebrolu N., Fallon M. Towards real-time forest inventory using handheld LiDAR. Robotics and Autonomous Systems. 2022; 157: 104240. DOI: https://doi.org/10.1016/j.robot.2022.104240.

12. Ritter T., Schwarz M., Tockner A., Leisch F., Nothdurft A. Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning. Forests. 2017; 8: 265. DOI: https://doi.org/10.3390/f8080265.

13. Gollob C., Ritter T., Wassermann C., Nothdurft A. Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots. Remote Sens. 2019; 11: 1602. DOI: https://doi.org/10.3390/rs11131602

14. Eitel J.U.H., Vierling L.A., Magney T.S. A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. Agricultural and Forest Meteorology. 2013; 180: 86-96. DOI: https://doi.org/10.1016/j.agrformet.2013.05.012.

15. Bunting P., Armston J., Lucas R.M., Clewley D. Sorted pulse data (SPD) library. Part I: A generic file format for LiDAR data from pulsed laser systems in terrestrial environments. Computers and Geosciences. 2013; 56: 197-206. DOI: https://doi.org/10.1016/j.cageo.2013.01.019.

16. Costantino D., Vozza G., Pepe M., Alfio V.S. Smartphone LiDAR Technologies for Surveying and Reality Modelling in Urban Scenarios: Evaluation Methods, Performance and Challenges. Applied System Innovation. 2022; 5: 63. DOI: https:// doi.org/10.3390/asi5040063.

17. Tomaštík J., Saloň Š., Tunák D., Chudý F., Kardoš M. Tango in forests - An initial experience of the use of the new Google technology in connection with forest inventory tasks. Computers and Electronics in Agriculture. 2017; 141: 109-117. DOI: https://doi.org/10.1016/j.compag.2017.07.015.

18. Hyyppä J., Virtanen J.-P., Jaakkola A., Yu X., Hyyppä H., Liang X. Feasibility of Google Tango and Kinect for Crowdsourcing Forestry Information. Forests. 2018; 9(1): 6. DOI: https://doi.org/10.3390/f9010006.

19. Spreafico A., Chiabrando F., Teppati Losè L., Giulio Tonolo F. The iPad Pro Built-in Lidar Sensor: 3D Rapid Mapping Tests and Quality Assessment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021. 2021; 43: 63-69. DOI: https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-63-2021.

20. Luetzenburg G., Kroon A., Bjørk A.A. Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. Scientific Reports. 2021; 11: 22221. DOI: https://doi.org/10.1038/s41598-021-01763-9.

21. Vogt M., Rips A., Emmelmann C. Comparison of iPad Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution. Technologies. 2021; 9(2): 25. DOI: https://doi.org/10.3390/technologies9020025.

22. Gollob C., Ritter T., Kraßnitzer R., Tockner A., Nothdurft A. Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sensing. 2021; 13: 3129. DOI: https://doi.org/10.3390/rs13163129.

23. Woo H., Kim I., Choi B. Computer Vision Techniques in Forest Inventory Assessment: Improving Accuracy of Tree Diameter Measurement Using Smartphone Camera and Photogrammetry. Sensors and Materials. 2021; 33(11): 3835-3845. DOI: https://doi.org/10.18494/SAM.2021.3605.

24. Sandim A., Amaro M., Silva M.E., Cunha J., Morais S., Marques A., Ferreira A., Lousada J.L., Fonseca T. New Technologies for Expedited Forest Inventory Using Smartphone Applications. Forests. 2023; 14: 1553. DOI: https://doi.org/10.3390/f14081553.

25. Pitkänen T.P., Räty M., Hyvönen P., Korhonen K.T., Vauhkonen J. Using auxiliary data to rationalize smartphone-based pre-harvest forest mensuration. Forestry: An International Journal of Forest Research. 2022; 95(2): 247-260. DOI: https://doi.org/10.1093/forestry/cpab039.

26. Tatsumi S., Yamaguchi K., Furuya N. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution. 2023; 14: 1603-1609. DOI: https://doi.org/10.1111/2041-210X.13900.

27. Pace R., Masini E., Giuliarelli D., Biagiola L., Tomao A., Guidolotti G., Agrimi M., Portoghesi L., De Angelis P., Calfapietra C. Tree Measurements in the Urban Environment: Insights from Traditional and Digital Field Instruments to Smartphone Applications. Arboriculture & Urban Forestry (AUF). 2022; 48 (2): 113-123. DOI: https://doi.org/10.48044/jauf.2022.009.

28. Lindberg L. Forest data acquisition with the application Arboreal Forest: A study about measurement precision, accuracy and efficiency. Umeå, 2020: 54. Rezhim dostupa: https://stud.epsilon.slu.se/15456/7/lindberg_l_200331.pdf

29. Luetzenburg G., Kroon A., Bjørk A.A. Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. Sci Rep. 2021; 11: 22221. DOI: https://doi.org/10.1038/s41598-021-01763-9.

30. Rouvinen T. Trestima - cifrovye fotografii dlya taksacii lesa. Sibirskiy lesnoy zhurnal. 2014; 5: 69-76. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=22740162.

31. Carpentier M., Giguère P., Gaudreault J. Tree Species Identification from Bark Images Using Convolutional Neural Networks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain. 2018; 1075-1081. DOI: https://doi.org/10.1109/IROS.2018.8593514.

32. Robert M., Dallaire P., Giguère P. Tree bark re-identification using a deep-learning feature descriptor. 17th Conference on Computer and Robot Vision (CRV), Ottawa, ON, Canada. 2020; 25-32. DOI: https://doi.org/10.1109/CRV50864.2020.00012.

33. Shevelev S.L. Sostoyanie i perspektivy sovershenstvovaniya normativnoy bazy taksacii tovarnoy struktury drevostoev Sibiri. Lesnaya taksaciya i lesoustroystvo. 2008; 1(39): 101-105. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=21196651.

34. Kottner S., Thali M.J.., Gascho D. Using the iPhone's LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging. 2023; 32: 200535. DOI: https://doi.org/10.1016/j.fri.2023.200535.

35. Monsalve A., Yager E.M., Tonina D. Evaluating Apple iPhone LiDAR measurements of topography and roughness elements in coarse bedded streams. Journal of Ecohydraulics. 2023. DOI: https://doi.org/10.1080/24705357.2023.2204087.


Login or Create
* Forgot password?