Abstract and keywords
Abstract (English):
Curves have always been part geometry. Initially, there were lines and circle, then it was added to a conic section and later, with the advent of analytic geometry, they added more complex curves. Particularly in a number of lines are algebraic curves that are described by algebraic equations. Curves found application mostly in mechanics. Today algebraic curves used in engineering and in mathematics, in number theory, knot theory, computer science, criminology, etc. With the bringing to account of complex numbers became possible to consider curves in the complex plane. It has expanded the horizons of geometry and enriched their knowledge on curves, particularly on algebraic curves. Our goal is to give a geometric picture of the foci of algebraic curves clearly show the position of the foci in the plane, show how the number of foci associated with a class curve. The solution of this problem we see in the application we have developed ways to visualize imaginary images to the study of foci and focal centers of algebraic curves. This article explains the concept of the foci of algebraic curves shows the basic principle of the curve-theory and offers a method for the identification of the foci. The geometric picture of the foci is shown in a diagram, which is putted together from two tables. One table shows the real curve with her foci, the other table shows an imaginary cut of the curve, on which the isotropic line contacts the cut and under them intersects in a real point. The point is a focal point of the real curve. This project shows 16 diagrams for conic, cubes and quadrics.

Keywords:
algebraic curve, circular curve, order of the curve, class of the curve, conics, cubics, quartics, isotropic lines, cyclical points, ideal line, imaginary section, tangent line, ordinary foci, special foci.
Text

Введение

Кривые линии всегда были частью геометрии [1]. О кривых линиях статьи имеются в различных научных сборниках [6; 13–15; 18; 20], в том числе и в журнале «Геометрия и графика» [6; 15]. Вначале это были прямые и окружности, затем к ним добавились конические сечения и позже, с появлением аналитической геометрии, – более сложные кривые. Особо в ряду линий стоят алгебраические кривые, описываемые алгебраическими уравнениями. Кривые линии находили приложение большей частью в механике. Сегодня алгебраические кривые используются как в технике, так и в самой математике – в теории чисел, теории узлов, информатике, криминалистике и др.

References

1. Bronshtejn I.N., Semendjaev K.A. Spravochnik po matematike dlja inzhenerov i uchashhihsja vtuzov [Handbook of mathematics for engineers and students of technical colleges]. Moscow, Nauka Publ., 1986. 544 p.

2. Vygodskij M.Ja. Spravochnik po vysshej matematike [Handbook of higher mathematics]. Moscow, Nauka Publ., 1975. 872 p.

3. Girsh A.G. Kompleksnaja geometrija - evklidova i psevdoevklidova [Complex geometry - Euclidean and pseudo-euclidean]. Moscow, OOO «IPC "Maska"» Publ., 2013. 216 p.

4. Girsh A.G. Nagljadnaja mnimaja geometrija [Visual imaginary geometry]. Moscow, OOO «IPC "Maska"» Publ., 2008. 216 p.

5. Girsh A.G. O kompleksnoj geometrii i ob avtore [On complex geometry and about the author] Available at: http://www.anhirsch.de

6. Ivanov G.S. Konstruktivnyj sposob issledovanija cvojstv parametricheski zadannyh krivyh [Constructive way to study the properties of parametrically defined curves]. Geometrija i grafika. [Geometry and graphics] 2014, V. 2, I. 3, pp. 3-6. DOI:https://doi.org/10.12737/6518. (in Russian).

7. Klejn F. Lekcii o razvitii matematiki v XIX stoletii, ch. I [Lectures on mathematics in the XIX century, part I]. Moscow, Nauka Publ., 1989. 465 p.

8. Klemens G. Mozaika teorii kompleksnyh krivyh [Mosaic theory of complex curves]. Moscow, Nauka Publ., 1984. 160 p.

9. Korotkij V.A. Dvojnoe prikosnovenie v puchke poverhnostej vtorogo porjadka [Double-tap in the beam surfaces of the second order]. Geometrija i grafika. [Geometry and graphics]. 2014, V. 2, I. 1, pp. 9-14. DOI:https://doi.org/10.12737/3843. (in Russian).

10. Matematicheskaja jenciklopedija [Mathematical encyclopedia]. V. 1-5. Moscow, Sovetskaja Jenciklopedija Publ., 1984. 1060 p.

11. Rid M. Algebraicheskaja geometrija dlja vseh [Algebraic geometry for all]. Moscow, Mir Publ., 1991. 151 p.

12. Savjolov A.A. Ploskie krivye. Sistematika, svojstva, primenenija. (Spravochnoe rukovodstvo) [Plane curves. Taxonomy, properties, applications. (Reference manual)]. Moscow, FM Publ., 1960. 293 p.

13. Salkov N.A. Ob odnom graficheskom postroenii giperboly [About one graphical building hyperbola]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and engineering graphics]. Kiev, Budivel’nik Publ., 1982, I. 34, pp. 95-98. (in Russian)

14. Salkov N.A. Pribor dlja vycherchivanija krivyh vtorogo porjadka [Device to plot the curves of the second order]. Krivoj Rog, 1986. Dep v UkrNIINTI, № 1162Uk-86. (in Russian).

15. Salkov N.A. Jellips: kasatel´naja i normal´ [Ellipse: the tangent and normal]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 35-37. DOI:https://doi.org/10.12737/2084 (in Russian).

16. Smogorzhevskij A.S., Stolbova E.S. Spravochnik po teorii krivyh tret´ego porjadka [A Handbook on the theory of curves of the third order]. Moscow, FM Publ., 1961. 264 p.

17. Böttcher R. Einführung in die Theorie der algebraischen Kurven und deren Eigenschaften. Fern Universität in Hagen, 2006, 434 S.

18. Heuser W., Burau W. Integrale algebraischer Funktionen und ebene algebraische Kurven. Berlin: Deutscher Verlag, 1958.

19. Plücker J. Über solche Punkte, die bei Curven einer höheren Ordnung als der zweiten den Brennpuncten der Kegelschnitte entsprechen. Journal für reine u. angewandte Mathematik. 10, 1832, 84-91.

20. Rice Ethel A. On the foci of plane algebraic corves with application to symmetric cubic corves. Am. Math. Monthly, 43, 1936, 618-630.

21. Wieleitner H. Theorie der ebenen algebraischen Kurven höherer Ordnung - Leipzig: G.J. Göschen´sche Verlagshandlung, 1905. 313 S.

Login or Create
* Forgot password?