Russian Federation
Russian Federation
"Engineering Graphics", "Engineering Geometry", "Engineering and Computer Graphics", as well as other, one way or another called geometric-graphic disciplines, are based on the theory of projection modeling of descriptive geometry. Descriptive geometry is the first section of any such course and is the first discipline representing technical areas of higher education, which university students encounter. Along with physics and mathematics, it becomes the basis for further study of special technical disciplines, as it forms the knowledge and skills of working with design documentation necessary for understanding and completing the tasks of these courses. But projection-graphic methods of descriptive geometry can be useful not only when constructing images in a drawing. The development of information technologies makes it possible to successfully use constructive geometric modeling to solve a variety of problems in general technical disciplines, such as theoretical mechanics, theory of mechanisms and machines, mechanical engineering technology, metallurgy, physics and others, if it is necessary to implement any graphical algorithms or research objects are spatial structures. It seems useful to introduce applied design problems into the practice of teaching descriptive geometry. Solving such problems reveals interdisciplinary connections, which arouses interest among students and contributes to the formation of a holistic perception of educational information and understanding of the practical significance of the discipline. Demonstration of these connections using examples of problem solving is the goal of this work. The article presents a comparative analysis of the effectiveness of using various geometric-graphical methods for solving problems. The expediency of presenting theoretical material for a descriptive geometry course is noted using the example of practice-oriented problems related to the topics of general technical disciplines. The use of interdisciplinary tasks in preparation for subject olympiads as part of additional elective classes is justified. Some problems and algorithms for solving them using constructive geometric modeling methods are presented. An assessment was made of the experience of using the proposed methodology.
engineering graphics, descriptive geometry, engineering geometry, computer graphics, graphical methods of solving applied problems, constructive geometric models, projection plane replacement method
1. Boykov A.A. K voprosu o metodike ispol'zovaniya algoritmov pri reshenii zadach nachertatel'noy geometrii [Tekst] / A.A. Boykov, A.A. Sidorov, A.M. Fedotov // Geometriya i grafika. – 2018. – T. 6. – № 3. – S. 56–68. – DOI: 10.12737 / article_5bc45add9a2b21.45929543
2. Vereschagina T.A. Inzhenernaya zadacha kak didakticheskiy instrumentariy dlya aktivizacii geometro-graficheskoy podgotovki studentov [Tekst] / T.A. Vereschagina, N.S. Kadykova, V.V. Rustamyan, A.V. Efremov // Sovremennoe professional'noe obrazovanie: opyt, problemy, perspektivy: materialy VIII Mezhdunarodnoy nauchno-prakticheskoy konferencii. V 2-h ch. – Rostov n/D. 2021. S. 206–213.
3. Voloshinov D.V. Ispol'zovanie metoda dopolnitel'nogo ortogonal'nogo proecirovaniya v praktike prepodavaniya kursa geometricheskogo modelirovaniya [Tekst] / D.V. Voloshinov, M.S. Kokorin // Sovremennoe mashinostroenie. Nauka i obrazovanie: sbornik nauchnyh trudov po materialam 3-y Mezhdunarodnoy nauchno-prakticheskoy konferencii. SPb. : Izd-vo Sankt-Peterburgskogo politehnicheskogo uyta Petra Velikogo, 2013. – 1205 s. S. 76-84.
4. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavaniya graficheskih disciplin [Tekst] / D.V. Voloshinov, K.N. Solomonov // Geometriya i grafika. – 2013. – T. 1. – № 2. – S. 10–13. – DOI:https://doi.org/10.12737/778
5. Voloshinov D.V. Nauchnye osnovy i praktika proektirovaniya. Teoriya i metody geometricheskogo modelirovaniya: uchebnoe posobie [Tekst] / D.V. Voloshinov – SPb.: Izd-vo Sankt-Peterburgskogo politehnicheskogo universiteta Petra Velikogo, 2008. – 183 s.
6. Voloshinov D.V. Nekotorye aspekty pedagogicheskoy modeli konstruktivnogo geometricheskogo modelirovaniya [Tekst] / D.V. Voloshinov, K.N. Solomonov, L.O. Mokrecova, L.I. Tischuk // Fiziko-tehnicheskaya informatika (CPT 2020): Materialy 8-oy Mezhdunarodnoy konferencii, Puschino, Moskovskaya obl., 09–13 noyabrya 2020 goda. Ch. 2. – Nizhniy Novgorod: Nauchno-issledovatel'skiy centr fiziko - tehnicheskoy informatiki, 2020. – S. 321–328. – DOI�https://doi.org/10.30987/conferencearticle_5fd755c0bbd5b8.16491896
7. Voloshinov D.V. O perspektivah razvitiya geometrii i ee instrumentariya [Tekst] / D.V. Voloshinov // Geometriya i grafika. – 2014. – T. 2. – № 1. – S. 15 – 21. – DOIhttps://doi.org/10.12737/3844
8. Voloshinov D.V. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2019619710 Rossiyskaya Federaciya. Simpleks: № 2019618404: zayavl. 09.07.2019: opubl. 23.07.2019 / D.V. Voloshinov; zayavitel' – Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Sankt-Peterburgskiy gosudarstvennyy universitet telekommunikaciy im. prof. Bonch-Bruevicha».
9. Vyshnepol'skiy V.I. Vserossiyskie nauchno-metodicheskaya konferenciya «Problemy inzhenernoy geometrii» i seminar «Geometriya i grafika»: itogi 2021 g. [Tekst] / V.I. Vyshnepol'skiy, N.S. Kadykova, T.A. Vereschagina // Geometriya i grafika. – 2022. – T. 10. – № 2. – S. 35 – 52. – DOI: 10. 12737 /2308 -4898-2022 -10- 2 -35 -52
10. Vyshnepol'skiy V.I. Kursovoe proektirovanie s primeneniem praktiko-orientirovannogo obucheniya na kafedre inzhenernoy grafiki RTU MIREA dlya studentov radiotehnicheskih special'nostey / V.I. Vyshnepol'skiy, R.A. Verbickiy, A.V. Efremov // Aktual'nye problemy i perspektivy razvitiya radiotehnicheskih i infokommunikacionnyh sistem "RADIOINFOKOM-2021" : sbornik nauchnyh statey V mezhdunarodnoy nauchno-prakticheskoy konferencii, Moskva, 15–19 noyabrya 2021 goda. – M.: MIREA – Rossiyskiy tehnologicheskiy universitet, 2021. – S. 686–691.
11. Vyshnepol'skiy V.I. Metodicheskie sistemy podgotovki i provedeniya olimpiad i razvitiya intellektual'nyh sposobnostey studentov v RTU MIREA / V.I. Vyshnepol'skiy, N.S. Kadykova, A.V. Efremov, K.T. Egiazaryan // Geometriya i grafika. – 2023. – T. 11. – № 1. – S. 44–60. – DOIhttps://doi.org/10.12737/2308-4898-2023-11-1-44-60
12. Vyshnepol'skiy V.I. Organizaciya praktiko-orientirovannogo obucheniya na kafedre «Inzhenernaya grafika» RTU MIREA [Tekst] / V.I. Vyshnepol'skiy, A.A. Boykov, A.V. Efremov, N.S. Kadykova // Geometriya i grafika. – 2023. – T. 11. – № 1. – S. 35–43. – DOIhttps://doi.org/10.12737/2308-4898-2023-11-1-35-43
13. Emel'yanov S.G. Inzhenernaya grafika v uchebnyh disciplinah: uchebnoe posobie [Tekst] / S.G. Emel'yanov, V.A. Klimenko, P.N. Uchaev, K.P. Uchaeva; pod obsch. red. prof. P.N. Uchaeva. – Staryy Oskol: TNT, 2013. – 352 s.
14. Efremov A.V. Analiz traektorii dvizheniya tochek analogov treugol'nika Relo, vraschaemyh v ramkah kvadratnoy i rombovidnoy form / A.V. Efremov, T.A. Vereschagina, A. A. Igonina [i dr.] // Zhurnal estestvennonauchnyh issledovaniy. – 2021. – T. 6. – № 2. – S. 31–37.
15. Kozlova I.A. Graficheskie discipliny i informatizaciya inzhenernogo obrazovaniya [Tekst] / I.A. Kozlova, R.B. Slavin, B.M. Slavin // Geometriya i grafika. – 2022. – T. 10. – № 4. – S. 35–45. – DOIhttps://doi.org/10.12737/2308-4898-2022-10-4-35-45
16. Kokorin M.S. Semioticheskie mehanizmy geometricheskogo modelirovaniya v sovremennom shkol'nom kurse fiziki [Elektronnyy resurs] / M.S. Kokorin, B.A. Komarov // Sovremennye problemy nauki i obrazovaniya. – 2018. – № 1. – URL: http://www.science-education.ru/article/view?id=27434 (data obrascheniya: 26.01.2024)
17. Kondrat'ev A.S. Metody resheniya zadach po fizike [Tekst] / A.S. Kondrat'ev, L.A. Larchenkova, A.V. Lyapcev. – M.: FIZMATLIT, 2012. – 312 s.
18. Krasil'nikova G.A. Nachertatel'naya geometriya i inzhenernaya grafika. Kratkiy kurs lekciy po nachertatel'noy geometrii [Tekst] / G.A. Krasil'nikova, M.S. Kokorin, N.S. Ivanova. – SPb: Izd-vo Sankt-Peterburgskogo politehn. un-ta Petra Velikogo, 2016. – 88 s.
19. Lyzlov A.N. Nachertatel'naya geometriya. Zadachi i resheniya / A.N. Lyzlov, M.V. Rakitskaya, D.E. Tihonov-Bugrov. – SPb.: Lan', 2011. – 96 s.
20. Markova T.V. Koncepciya vybora zadach v obuchenii nachertatel'noy geometrii [Tekst] / T.V. Markova, I.S. Smirnova, N.S. Ivanova // Sovremennye naukoemkie tehnologii. – 2024. – № 5-1. – S. 178–185. – DOI:�https://doi.org/10.17513/snt.40025.
21. Markova T.V. Kursovaya rabota po inzhenernoy grafike kak instrument formirovaniya konstruktorskogo myshleniya [Tekst] / T.V. Markova, A.L. Bochkov, M.S. Kokorin, T.A. Nikitina // Geometriya i grafika. – 2023. – T. 11. – № 3. – S. 26–38. – DOI:https://doi.org/10.12737/2308-4898-2023-11-3-26-38
22. Markova T.V. Celepolaganie v reshenii zadach inzhenernoy geometrii [Tekst] / T.V. Markova, I.S. Smirnova, N.S. Ivanova // Sovremennye problemy nauki i obrazovaniya. – 2024. – № 3. – S. 65. – DOI:�https://doi.org/10.17513/spno.33411
23. Nazarova O.N. Analiz nekotoryh zadach kursa teoreticheskoy mehaniki, reshaemyh metodami nachertatel'noy geometrii [Tekst] / O.N. Nazarova // Geometriya i grafika. – 2019. – T. 7. – № 4. – S. 76–83. – DOI: 10.12737 / 2308-4898-2020-76-83
24. Paliy N V. Ispol'zovanie sposobov nachertatel'noy geometrii dlya graficheskogo issledovaniya parametrov rezhuschey chasti spiral'nogo sverla [Tekst] / N.V. Paliy // Geometriya i grafika. – 2023. – T. 11. – № 2. – S. 39–46. – DOI: 10.12737 / 2308-4898-2023-11-2-39-46
25. Polyakov L.G. K voprosu prakticheskoy napravlennosti obucheniya studentov tehnicheskogo vuza osnovam nachertatel'noy geometrii [Tekst] / L.G. Polyakov, T.D. Polyakova // Otkrytoe obrazovanie. – 2020. T. 24. – № 2. – S. 29–38. – DOI:https://doi.org/10.21686/1818-4243-2020-2-29-38
26. Savel'ev Yu.A. Vychislitel'naya grafika v reshenii netradicionnyh inzhenernyh zadach [Tekst] / Yu.A. Savel'ev, E.Yu. Cherkasova // Geometriya i grafika. – 2020. – T. 8. – № 1. – S. 34–45. – DOI: 10.12737 / 2308-4898-2020-33-44
27. Sal'kov N.A. Fenomen prisutstviya nachertatel'noy geometrii v drugih uchebnyh disciplinah [Tekst] / N A. Sal'kov, N.S. Kadykova // Geometriya i grafika. – 2020. – T. 8. – № 4. – S. 61–73. – DOI: 10.12737 / 2308-4898-2021-8-4-61-73
28. Tihonov-Bugrov D.E. Proektno-konstruktorskoe obuchenie inzhenernoy grafike: vchera, segodnya, zavtra [Tekst] / D.E. Tihonov-Bugrov, S.N. Abrosimov // Geometriya i grafika. – 2015. – T. 3. – № 3. – S. 47–57. – DOI: �https://doi.org/10.12737/14419
29. Usanova E.V. Proektnoe obuchenie v bazovoy geometro-graficheskoy podgotovke [Tekst] / E.V. Usanova // Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. – 2018. – № 3. – S. 93–103.
30. Fedoseeva M.A. Metodika podgotovki studentov tehnicheskih vuzov graficheskim disciplinam [Tekst] / M.A. Fedoseeva // Geometriya i grafika. – 2019. – T. 7. – № 1. – S. 68–73. – DOI: �https://doi.org/10.12737/article_5c91fed8650bb7.79232969
31. Markova T. Surface modeling in the course of engineering graphics / T. Markova, A. Bochkov, M. Kokorin, T. Nikitina // CEUR Workshop Proceedings : 30, Saint Petersburg, 22–25 september 2020. Saint Petersburg, 2020.