Glazov, Izhevsk, Russian Federation
UDK 37 Образование. Воспитание. Обучение. Организация досуга
The problem of identifying the key concepts of the school astronomy course and establishing intra-subject relationships between different sections of the course is analyzed. As result of the content analysis of the school astronomy textbook, 42 key concepts have been identified, the knowledge of which is of fundamental importance for the course assimilation. In order to determine the strength of intra-subject connections, the keyword lists are obtained for each section of the astrono-my course indicating the number of their uses, which are actually formalized models of the compared texts. Using special computer programs on ABCPascal, are cal-culated: 1) the cosine measure of proximity between any two sections; 2) the Dice measure that reacts to the presence of words in texts and does not take into account the number of word uses. The paradigmatic connection between different terms was taken into account, for example: Sun – star, Saturn – planet, etc. Matrices of proximity measures are obtained, and based on them are constructed: 1) the graph showing intra-subject connections between the astronomy textbook sections; 2) the graph that takes into account the «distances» between sections in a multidimensional semantic space. In order to assess the integration degree of various sections into the astronomy course, the average coefficients of semantic proximity of each section with other sections are calculated. It is found that their greatest values are in sections 3 (Motion of celestial bodies), 5 (Methods of studying celestial bodies) and 7 (Stars). They are close to each other and form the astronomy textbook core.
astronomy, intrasubject connections, didactics, concept, proximity measure, text
1. Andrievskaya N.K. Gibridnaya intellektual'naya mera ocenki semanticheskoy blizosti // Problemy iskusstvennogo intellekta. – 2021. – № 1. – S. 4–17.
2. Borodaschenko A.Yu. Analiz tekstov na semanticheskoe shodstvo na osnove apparata teorii grafov // Izvestiya OrelGTU. Seriya: Informacionnye sistemy i tehnologii. – 2008. – № 1-2. – S. 46–52.
3. Vanyushkin A.S., Graschenko L.A. Metody i algoritmy izvlecheniya klyuchevyh slov // Novye informacionnye tehnologii v avtomatizirovannyh sistemah. – 2016. – № 19. – S. 85–93.
4. Velihov P.E. Mery semanticheskoy blizosti statey Vikipedii i ih primenenie v obrabotke tekstov // Informacionnye tehnologii i vychislitel'nye sistemy. – 2009. – № 1. – S. 23–37.
5. Voronina I.E. i dr. Funkcional'nyy podhod k vydeleniyu klyuchevyh slov: metodika i realizaciya / I.E. Voronina, A.A. Kretov, I.V. Popova, L.V. Dudkina // Vestnik VGU. Seriya: Sistemnyy analiz i informacionnye tehnologii. – 2009. – № 1. – S. 68–72.
6. Galuzo I.V. Astronomiya: ucheb. dlya 11-go kl. uchrezhdeniy obsch. sred. obrazovaniya s rus. yaz. obucheniya / I.V. Galuzo, V.A. Golubev, A. . Shimbalev. – Minsk: Adukacyya і vyhavanne, 2015. – 224 s.
7. Gniteckaya T.N., Shutko Yu.E. Vnutripredmetnye svyazi v obuchenii fizike: monografiya / T.N. Gniteckaya. Dal'nevost. federal. un-t. – Vladivostok: Izd-vo Dal'nevost. federal. un-ta, 2023. – 208 s.
8. Efimova T.V. Analiz hudozhestvennogo teksta s primeneniem semanticheskoy seti // Vestnik VGU. Seriya: Lingvistika i mezhkul'turnaya kommunikaciya. – 2003. – № 1. – S. 57–67.
9. Iskanderov N.F. Vidy vnutripredmetnyh svyazey v shkol'nom kurse fiziki // Mir nauki, kul'tury, obrazovaniya. – 2012. – № 6. – S. 161–163.
10. Kuznecov L.A., Kuznecova V.F. Tehnologiya avtomatizirovannoy ocenki soderzhatel'noy blizosti tekstov // Programmnye produkty i sistemy. 2013. – № 1. – S. 34–42.
11. Mayer R.V. Slozhnost' uchebnyh ponyatiy i tekstov:monografiya. – Glazov: GIPU, 2024. – 132 s.
12. Nugumanova A.B. i dr. Obogaschenie modeli bag-ofwords semanticheskimi svyazyami dlya povysheniya kachestva klassifikacii tekstov predmetnoy oblasti / A.B. Nugumanova, I.A. Bessmertnyy, P. Pecina, E.M. Bayburin // Programmnye produkty i sistemy. – 2016. – № 2 (114). – S. 89–99.
13. Popov K.A., Strochilov P.A. Koncentricheskaya model' postroeniya uchebnogo kursa, orientirovannogo na realizaciyu vnutripredmetnyh svyazey // Izvestiya VGPU. – 2014. – № 4. – S. 206–210.
14. Suleymanov A.Sh. Semanticheskaya blizost' i semanticheskie rasstoyaniya mezhdu tekstami // Sistemnі tehnologії. – 2007. – № 10. – S. 132–136.
15. Turbina O.A., Savel'eva O.A. Princip klassifikacii tekstovyh svyazey // Vestnik YuUrGU. – 2006. № 6. – S. 53–59.
16. Sheremet'eva S.O., Osminin P.G. Metody i modeli avtomaticheskogo izvlecheniya klyuchevyh slov // Vestnik YuUrGU. Seriya: Lingvistika. – 2015. T. 12. – № 1. – S. 76–81.
17. Barker K., Cornacchia N. Using Noun Phrase Heads to Extract Document Keyphrases // Advances in Artificial Intelligence. – 2000. Vol. 1822. – pp. 40–52.