Ural Federal University (Laboratory of Natural Methods in Humanities, Senior Researcher)
Ekaterinburg, Ekaterinburg, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Miyake events are fast and significant radiocarbon rises in the Earth's atmosphere. Japanese researchers from Nagoya University discovered this kind of event based on radiocarbon analysis in tree rings. They found a spike in the radioactive carbon isotope in the ring of 775AD compared to the 774AD ring. Subsequently, all such events became known by the name of the first author of the seminal paper. To date, five Miyake events have been discovered: around 12350 BC, in 7176 and 5259 BC, in 775 and 993 AD. The events of 5410 BC, 1052 and 1279 AD are less pronounced and require confirmation. Among the possible reasons for the sharp increase in the content of radiocarbon in the atmosphere a comet falling to the Earth or to the Sun, a short gamma-ray burst, a supernova outbreak were suggested. The most likely version, however, is considered to be solar energetic particles as a result of a super-powerful solar flare. Such solar events should lead to auroras in low latitudes. However, in the annals of Europe, the Middle East and the Far East, no reliable records of auroras in the years of Miyake events have been found. Nowadays, Miyake events are used in many fields of science, for example, to check the reliability of dendrochronological dating, for accurate dating of ice core layers. The most important, however, is considered to be the possibility of radiocarbon dating with an accuracy of one year.
Miyake events, tree rings, radiocarbon, extreme solar flares, radiocarbon dating, auroras
1. Miyake, F., Nagaya, K., Masuda, K., Nakamura, T., 2012. A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan. Nature 486(7402): 240–2, Doi:https://doi.org/10.1038/nature11123.
2. Stuiver, M., Becker, B., 1993. High-Precision Decadal Calibration of the Radiocarbon Time Scale, AD 1950–6000 BC. Radiocarbon 35(1): 35–65, Doi:https://doi.org/10.1017/S0033822200013801.
3. Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3): 1127–51, Doi:https://doi.org/10.1017/S0033822200019172.
4. Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Friedrich, M., Kovaltsov, G.A., et al., 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy & Astrophysics 552: L3, Doi:https://doi.org/10.1051/0004-6361/201321080.
5. Jull, A.J.T., Panyushkina, I.P., Lange, T.E., Kukarskih, V. V., Myglan, V.S., Clark, K.J., et al., 2014. Excursions in the 14C record at A.D. 774-775 in tree rings from Russia and America. Geophysical Research Letters 41(8): 3004–10, Doi:https://doi.org/10.1002/2014GL059874.
6. Büntgen, U., Wacker, L., Nicolussi, K., Sigl, M., Güttler, D., Tegel, W., et al., 2014. Extraterrestrial confirmation of tree-ring dating. Nature Climate Change 4(6): 404–5, Doi:https://doi.org/10.1038/nclimate2240.
7. Büntgen, U., Wacker, L., Galván, J.D., Arnold, S., Arseneault, D., Baillie, M., et al., 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications 9(1): 3605, DOI:https://doi.org/10.1038/s41467-018-06036-0.
8. Güttler, D., Adolphi, F., Beer, J., Bleicher, N., Boswijk, G., Christl, M., et al., 2015. Rapid increase in cosmogenic14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in14C production spanning both hemispheres. Earth and Planetary Science Letters 411: 290–7, Doi:https://doi.org/10.1016/j.epsl.2014.11.048.
9. Rakowski, A.Z., Krąpiec, M., Huels, M., Pawlyta, J., Dreves, A., Meadows, J., 2015. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774-775. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 361: 564–8, Doi:https://doi.org/10.1016/j.nimb.2015.03.035.
10. Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., et al., 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9(3): 231–6, Doi:https://doi.org/10.1038/ngeo2652.
11. Park, J., Southon, J., Fahrni, S., Creasman, P.P., Mewaldt, R., 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4): 1147–56, Doi:https://doi.org/10.1017/RDC.2017.59.
12. Uusitalo, J., Arppe, L., Hackman, T., Helama, S., Kovaltsov, G., Mielikäinen, K., et al., 2018. Solar superstorm of AD 774 recorded subannually by Arctic tree rings. Nature Communications 9(1): 1–8, DOI:https://doi.org/10.1038/s41467-018-05883-1.
13. Park, J., Seo, J.-W., Hong, W., Park, G., Sung, K., Park, Y.J., et al., 2020. Estimation of the occurrence time of the Δ 14 C peak in ad 775 based on the oxidation time of 14 c in the atmosphere and Δ 14 C values in subannual tree rings. Radiocarbon 62(5): 1285–98, Doi:https://doi.org/10.1017/RDC.2020.69.
14. Park, J.H., Southon, J., Seo, J.W., Creasman, P.P., Hong, W., Park, G., et al., 2021. Δ14C Peaks Appearing in Earlywood and Latewood Tree Rings (Ad 770-780) in Northeastern Arizona. Radiocarbon 63(1): 223–8, DOI:https://doi.org/10.1017/RDC.2020.108.
15. Miyake, F., Masuda, K., Nakamura, T., 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4: 1–6, Doi:https://doi.org/10.1038/ncomms2783.
16. Miyake, F., Masuda, K., Hakozaki, M., Nakamura, T., Tokanai, F., Kato, K., et al., 2014. Verification of the Cosmic-Ray Event in AD 993–994 by Using a Japanese Hinoki Tree. Radiocarbon 56(3): 1189–94, DOI:https://doi.org/10.2458/56.17769.
17. Fogtmann-Schulz, A., Østbø, S.M., Nielsen, S.G.B., Olsen, J., Karoff, C., Knudsen, M.F., 2017. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16): 8621–8, DOI:https://doi.org/10.1002/2017GL074208.
18. Miyake, F., Masuda, K., Nakamura, T., Kimura, K., Hakozaki, M., Jull, A.J.T., et al., 2017. Search for annual14C excursions in the past. Radiocarbon 59(2): 315–20, Doi:https://doi.org/10.1017/RDC.2016.54.
19. Miyake, F., Jull, A.J.T., Panyushkina, I.P., Wacker, L., Salzer, M., Baisan, C.H., et al., 2017. Large 14 C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences 114(5): 881–4, Doi:https://doi.org/10.1073/pnas.1613144114.
20. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., et al., 2009. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon 51(4): 1111–50, DOI:https://doi.org/10.1017/S0033822200034202.
21. Sakurai, H., Tokanai, F., Miyake, F., Horiuchi, K., Masuda, K., Miyahara, H., et al., 2020. Prolonged production of 14C during the ~660 BCE solar proton event from Japanese tree rings. Scientific Reports 10(1): 1–7, DOI:https://doi.org/10.1038/s41598-019-57273-2.
22. Rakowski, A.Z., Pawlyta, J., Miyahara, H., Krąpiec, M., Molnár, M., Wiktorowski, D., et al., 2023. Radiocarbon concentration in sub-annual tree rings from Poland around 660 BCE. Radiocarbon: 1–10, DOI:https://doi.org/10.1017/RDC.2023.79.
23. Wang, F.Y., Yu, H., Zou, Y.C., Dai, Z.G., Cheng, K.S., 2017. A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China. Nature Communications 8(1): 4–8, DOI:https://doi.org/10.1038/s41467-017-01698-8.
24. Jull, A.J.T., Panyushkina, I.P., Molnár, M., Varga, T., Wacker, L., Brehm, N., et al., 2021. Rapid 14C excursion at 3372-3371 BCE not observed at two different locations. Nature Communications 12(1): 10–2, DOI:https://doi.org/10.1038/s41467-020-20695-y.
25. Jull, A.J.T., Panyushkina, I., Miyake, F., Masuda, K., Nakamura, T., Mitsutani, T., et al., 2018. More rapid 14C excursions in the tree-ring record: A record of different kind of solar activity at about 800 BC? Radiocarbon 60(4): 1237–48, DOI:https://doi.org/10.1017/RDC.2018.53.
26. Miyake, F., Panyushkina, I.P., Jull, A.J.T., Adolphi, F., Brehm, N., Helama, S., et al., 2021. A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings. Geophysical Research Letters 48(11), DOI:https://doi.org/10.1029/2021GL093419.
27. Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J., et al., 2021. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nature Geoscience 14(1): 10–5, DOI:https://doi.org/10.1038/s41561-020-00674-0.
28. Terrasi, F., Marzaioli, F., Buompane, R., Passariello, I., Porzio, G., Capano, M., et al., 2020. Can the 14C production in 1055 CE be affected by SN1054? Radiocarbon 62(5): 1403–18, DOI:https://doi.org/10.1017/RDC.2020.58.
29. Panyushkina, I., Livina, V., Molnár, M., Varga, T., Jull, A.J.T., 2022. Scaling the 14C-excursion signal in multiple tree-ring series with dynamic time warping. Radiocarbon 64(6): 1587–95, DOI:https://doi.org/10.1017/RDC.2022.25.
30. Miyahara, H., Tokanai, F., Moriya, T., Takeyama, M., Sakurai, H., Ohyama, M., et al., 2022. Recurrent Large-Scale Solar Proton Events Before the Onset of the Wolf Grand Solar Minimum. Geophysical Research Letters 49(5): 1–8, DOI:https://doi.org/10.1029/2021GL097201.
31. Brehm, N., Christl, M., Knowles, T.D.J., Casanova, E., Evershed, R.P., Adolphi, F., et al., 2022. Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE. Nature Communications 13(1): 1196, DOI:https://doi.org/10.1038/s41467-022-28804-9.
32. Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62(4): 725–57, DOI:https://doi.org/10.1017/RDC.2020.41.
33. Bard, E., Miramont, C., Capano, M., Guibal, F., Marschal, C., Rostek, F., et al., 2023. A radiocarbon spike at 14,300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial. Philosophical Transactions of the Royal Society A 381(2261), DOI:https://doi.org/10.1098/rsta.2022.0206.
34. Allen, J., 2012. Clue to an ancient cosmic-ray event? Nature 486(7404): 473–473, DOI:https://doi.org/10.1038/486473e.
35. Dee, M., Pope, B., Miles, D., Manning, S., Miyake, F., 2017. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59(2): 293–302, DOI:https://doi.org/10.1017/RDC.2016.50.
36. Hambaryan, V. V., Neuhäuser, R., 2013. A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5. Monthly Notices of the Royal Astronomical Society 430(1): 32–6, DOI:https://doi.org/10.1093/mnras/sts378.
37. Pavlov, A.K., Blinov, A. V., Konstantinov, A.N., Ostryakov, V.M., Vasilyev, G.I., Vdovina, M.A., et al., 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Monthly Notices of the Royal Astronomical Society 435(4): 2878–84, DOI:https://doi.org/10.1093/mnras/stt1468.
38. Liu, Y., Zhang, Z.F., Peng, Z.C., Ling, M.X., Shen, C.C., Liu, W.G., et al., 2014. Mysterious abrupt carbon-14 increase in coral contributed by a comet. Scientific Reports 4: 14–7, DOI:https://doi.org/10.1038/srep03728.
39. Chapman, J., Csikszentmihalyi, M., Neuhäuser, R., 2014. The Chinese comet observation in AD 773 January. Astronomische Nachrichten 335(9): 964–7, DOI:https://doi.org/10.1002/asna.201412069.
40. Eichler, D., Mordecai, D., 2012. Comet encounters and carbon 14. Astrophysical Journal Letters 761(2): 3–5, DOI:https://doi.org/10.1088/2041-8205/761/2/L27.
41. Chai, Y.-T., Zou, Y.-C., 2015. Searching for events in Chinese ancient records to explain the increase in 14 C from AD 774–775 and AD 993–994. Research in Astronomy and Astrophysics 15(9): 1504–12, DOI:https://doi.org/10.1088/1674-4527/15/9/007.
42. Melott, A.L., Thomas, B.C., 2012. Causes of an ad 774-775 14 C increase. Nature 491(7426): E1–2, DOI:https://doi.org/10.1038/nature11695.
43. Thomas, B.C., Melott, A.L., Arkenberg, K.R., Snyder, B.R., 2013. Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in 14C production. Geophysical Research Letters 40(6): 1237–40, DOI:https://doi.org/10.1002/grl.50222.
44. Usoskin, I.G., Kovaltsov, G.A., 2021. Mind the Gap: New Precise 14C Data Indicate the Nature of Extreme Solar Particle Events. Geophysical Research Letters 48(17): 1–5, DOI:https://doi.org/10.1029/2021GL094848.
45. Knudsen, M.F., Riisager, P., Donadini, F., Snowball, I., Muscheler, R., Korhonen, K., et al., 2008. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth and Planetary Science Letters 272 (1–2): 319–29, DOI:https://doi.org/10.1016/j.epsl.2008.04.048.
46. Panovska, S., Constable, C.G., Korte, M., 2018. Extending Global Continuous Geomagnetic Field Reconstructions on Timescales Beyond Human Civilization. Geochemistry, Geophysics, Geosystems 19(12): 4757–72, DOI:https://doi.org/10.1029/2018GC007966.
47. Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J.R., et al., 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of 774/5 and 993/4. Nature Communications 6: 1–8, DOI:https://doi.org/10.1038/ncomms9611.
48. Usoskin, I., Miyake, F., Baroni, M., Brehm, N., Dalla, S., Hayakawa, H., et al., 2023. Extreme Solar Events: Setting up a Paradigm. Space Science Reviews 219(8), DOI:https://doi.org/10.1007/s11214-023-01018-1.
49. Zhou, D., Wang, C., Peng, Z., Rutledge, R., Sun, Y., Liang, J., et al., 2013. The Solar Cosmic-Ray Origin for the Rapid 14 C Increase in AD775. 33Rd International Cosmic Ray Conference, Rio De Janeiro 2013 the Astroparticle Physics Conference, p. 14–7.
50. Zhou, D., Wang, C., Zhang, B., Zhang, S., Zhou, P., Sun, Y., et al., 2014. Super solar particle event around AD775 was found. Chinese Science Bulletin 59(22): 2736–42, DOI:https://doi.org/10.1007/s11434-014-0345-z.
51. Neuhäuser, R., Kunitzsch, P., 2014. A transient event in AD 775 reported by al-Tabarī: A bolide - not a nova, supernova, or kilonova. Astronomische Nachrichten 335(9): 968–80, DOI:https://doi.org/10.1002/asna.201412118.
52. Chapman, J., Neuhäuser, D.L., Neuhäuser, R., Csikszentmihalyi, M., 2015. A review of East Asian reports of aurorae and comets circa AD 775. Astronomische Nachrichten 336(6): 530–44, DOI:https://doi.org/10.1002/asna.201512193.
53. Stephenson, F.R., 2015. Astronomical evidence relating to the observed 14 C increases in A.D. 774-5 and 993-4 as determined from tree rings. Advances in Space Research 55(6): 1537–45, DOI:https://doi.org/10.1016/j.asr.2014.12.014.
54. Neuhäuser, R., Neuhäuser, D.L., 2015. Solar activity around AD 775 from aurorae and radiocarbon. Astronomische Nachrichten 336(3): 225–48, DOI:https://doi.org/10.1002/asna.201412160.
55. Hayakawa, H., Tamazawa, H., Kawamura, A.D., Isobe, H., 2015. Records of sunspot and aurora during CE 960-1279 in the Chinese chronicle of the Sòng dynasty. Earth, Planets and Space 67(1), DOI:https://doi.org/10.1186/s40623-015-0250-y.
56. Hayakawa, H., Isobe, H., Kawamura, A.D., Tamazawa, H., Miyahara, H., Kataoka, R., 2016. Unusual rainbow and white rainbow: A new auroral candidate in oriental historical sources. Publications of the Astronomical Society of Japan 68(3): 1–8, DOI:https://doi.org/10.1093/pasj/psw032.
57. Hayakawa, H., Iwahashi, K., Tamazawa, H., Ebihara, Y., Kawamura, A.D., Isobe, H., et al., 2017. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887. Publications of the Astronomical Society of Japan 69(6): 1–13, DOI:https://doi.org/10.1093/pasj/psx087.
58. Tamazawa, H., Kawamura, A.D., Hayakawa, H., Tsukamoto, A., Isobe, H., Ebihara, Y., 2017. Records of sunspot and aurora activity during 581-959 CE in Chinese official histories concerning the periods of Suí, Táng, and the Five Dynasties and Ten Kingdoms. Publications of the Astronomical Society of Japan 69(2): 1–14, DOI:https://doi.org/10.1093/pasj/psw132.
59. Hayakawa, H., Mitsuma, Y., Fujiwara, Y., Kawamura, A.D., Kataoka, R., Ebihara, Y., et al., 2017. The earliest drawings of datable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. Publications of the Astronomical Society of Japan 69(2): 1–15, DOI:https://doi.org/10.1093/pasj/psw128.
60. Hayakawa, H., Tamazawa, H., Ebihara, Y., Miyahara, H., Kawamura, A.D., Aoyama, T., et al., 2017. Records of sunspots and aurora candidates in the Chinese official histories of the Yuán and Míng dynasties during 1261–1644. Publications of the Astronomical Society of Japan 69(4): 1–25, DOI:https://doi.org/10.1093/pasj/psx045.
61. Neuhäuser, D.L., Neuhäuser, R., Chapman, J., 2018. New sunspots and aurorae in the historical Chinese text corpus? Comments on uncritical digital search applications. Astronomische Nachrichten 339(1): 10–29, DOI:https://doi.org/10.1002/asna.201713390.
62. Stephenson, F.R., Willis, D.M., Hayakawa, H., Ebihara, Y., Scott, C.J., Wilkinson, J., et al., 2019. Do the Chinese Astronomical Records Dated AD 776 January 12/13 Describe an Auroral Display or a Lunar Halo? A Critical Re-examination. Solar Physics 294(4): 1–24, DOI:https://doi.org/10.1007/s11207-019-1425-7.
63. Hayakawa, H., Stephenson, F.R., Uchikawa, Y., Ebihara, Y., Scott, C.J., Wild, M.N., et al., 2019. The Celestial Sign in the Anglo-Saxon Chronicle in the 770s: Insights on Contemporary Solar Activity. Solar Physics 294(4): 1–30, DOI:https://doi.org/10.1007/s11207-019-1424-8.
64. Maden, N., 2020. Historical aurora borealis catalog for Anatolia and Constantinople (hABcAC) during the Eastern Roman Empire period: Implications for past solar activity. Annales Geophysicae 38(4): 889–99, DOI:https://doi.org/10.5194/angeo-38-889-2020.
65. Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., et al., 2021. Ancient Auroral Records Compiled From Korean Historical Books. Journal of Geophysical Research: Space Physics 126(1): 1–6, DOI:https://doi.org/10.1029/2020JA028763.
66. Borisenkov, E.P., Paseckiy, V.M., 1988. Tysyacheletnyaya letopis' neobychaynyh yavleniy prirody.
67. Okamoto, S., Notsu, Y., Maehara, H., Namekata, K., Honda, S., Ikuta, K., et al., 2021. Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data. The Astrophysical Journal 906(2): 72, DOI:https://doi.org/10.3847/1538-4357/abc8f5.
68. Usoskin, I.G., 2023. A history of solar activity over millennia. vol. 20, Springer International Publishing.
69. Sukhodolov, T., Usoskin, I., Rozanov, E., Asvestari, E., Ball, W.T., Curran, M.A.J., et al., 2017. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Scientific Reports 7: 1–9, DOI:https://doi.org/10.1038/srep45257.
70. Miyake, F., Usoskin, I., Poluianov, S., 2019. Extreme Solar Particle Storms. IOP Publishing.
71. Kanzawa, K., Miyake, F., Horiuchi, K., Sasa, K., Takano, K., Matsumura, M., et al., 2021. High-Resolution 10Be and 36Cl Data From the Antarctic Dome Fuji Ice Core (∼100 Years Around 5480 BCE): An Unusual Grand Solar Minimum Occurrence? Journal of Geophysical Research: Space Physics 126(10), DOI:https://doi.org/10.1029/2021JA029378.
72. Usoskin, I.G., Solanki, S.K., Krivova, N.A., Hofer, B., Kovaltsov, G.A., Wacker, L., et al., 2021. Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astronomy and Astrophysics 649: 1–13, DOI:https://doi.org/10.1051/0004-6361/202140711.
73. Miyake, F., Hakozaki, M., Kimura, K., Tokanai, F., Nakamura, T., Takeyama, M., et al., 2022. Regional Differences in Carbon-14 Data of the 993 CE Cosmic Ray Event. Frontiers in Astronomy and Space Sciences 9(July): 1–8, DOI:https://doi.org/10.3389/fspas.2022.886140.
74. Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., et al., 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523(7562): 543–9, DOI:https://doi.org/10.1038/nature14565.
75. Paleari, C.I., Mekhaldi, F., Adolphi, F., Christl, M., Vockenhuber, C., Gautschi, P., et al., 2022. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nature Communications 13(1), DOI:https://doi.org/10.1038/s41467-021-27891-4.
76. Fowler, A.M., 2015. Are cosmogenic events about to revolutionise the crossdating of multi-millennial tree-ring chronologies? Dendrochronologia 35: 1–3, DOI:https://doi.org/10.1016/j.dendro.2015.05.004.
77. Walker, M., Mueller, A., Allen, K., Fenwick, P., Agrawal, V., Anchukaitis, K., et al., 2023. High resolution radiocarbon spike confirms tree ring dating with low sample depth. Dendrochronologia 77(October 2022): 126048, DOI:https://doi.org/10.1016/j.dendro.2022.126048.
78. Römer, P., Reinig, F., Konter, O., Friedrich, R., Urban, O., Čáslavský, J., et al., 2023. Multi-proxy crossdating extends the longest high-elevation tree-ring chronology from the Mediterranean. Dendrochronologia 79(March), DOI:https://doi.org/10.1016/j.dendro.2023.126085.
79. Black, B.A., Pearl, J.K., Pearson, C.L., Pringle, P.T., Frank, D.C., Page, M.T., et al., 2023. A multifault earthquake threat for the Seattle metropolitan region revealed by mass tree mortality 2(September): 1–10, DOI:https://doi.org/10.1126/sciadv.adh4973.
80. Quarta, G., Filippo, A. Di., Calcagnile, L., D’Elia, M., Biondi, F., Saba, E.P., et al., 2019. Identifying the 993-994 CE Miyake event in the oldest dated living tree in Europe. Radiocarbon 61(5): 1317–25, DOI:https://doi.org/10.1017/RDC.2019.37.
81. Wacker, L., Güttler, D., Goll, J., Hurni, J.P., Synal, H.-A., Walti, N., 2014. Radiocarbon Dating to a Single Year by Means of Rapid Atmospheric 14 C Changes . Radiocarbon 56(2): 573–9, DOI:https://doi.org/10.2458/56.17634.
82. Oppenheimer, C., Wacker, L., Xu, J., Galván, J.D., Stoffel, M., Guillet, S., et al., 2017. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quaternary Science Reviews 158: 164–71, DOI:https://doi.org/10.1016/j.quascirev.2016.12.024.
83. Hakozaki, M., Miyake, F., Nakamura, T., Kimura, K., Masuda, K., Okuno, M., 2018. Verification of the annual dating of the 10th century baitoushan volcano eruption based on an AD 774-775 radiocarbon spike. Radiocarbon 60(1): 261–8, DOI:https://doi.org/10.1017/RDC.2017.75.
84. Büntgen, U., Eggertsson, Ó., Wacker, L., Sigl, M., Ljungqvist, F.C., di Cosmo, N., et al., 2017. Multi-proxy dating of Iceland’s major pre-settlement Katla eruption to 822-823 CE. Geology 45(9): 783–6, DOI:https://doi.org/10.1130/G39269.1.
85. Kuitems, M., Panin, A., Scifo, A., Arzhantseva, I., Kononov, Y., Doeve, P., et al., 2020. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin. Proceedings of the National Academy of Sciences of the United States of America 117(25): 14038–41, DOI:https://doi.org/10.1073/pnas.1921301117.
86. Kraȩpiec, M., Rakowski, A., Pawlyta, J., Wiktorowski, D., Bolka, M., 2021. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujście (NW Poland), dated using rapid atmospheric 14C changes. Radiocarbon 63(4): 1205–14, DOI:https://doi.org/10.1017/RDC.2020.116.
87. Kuitems, M., Wallace, B.L., Lindsay, C., Scifo, A., Doeve, P., Jenkins, K., et al., 2022. Evidence for European presence in the Americas in ad 1021. Nature 601(7893): 388–91, DOI:https://doi.org/10.1038/s41586-021-03972-8.
88. Meadows, J., Zunde, M., Lēģere, L., Dee, M.W., Hamann, C., 2023. Single-Year 14 C Dating of the Lake-Fortress At Āraiši, Latvia . Radiocarbon 00(00): 1–11, DOI:https://doi.org/10.1017/rdc.2023.24.
89. Maczkowski, A., Pearson, C., Francuz, J., Giagkoulis, T., Szidat, S., Wacker, L., et al., 2023. Absolutely dating the European Neolithic through a rapid 14C excursion (October), DOI:https://doi.org/10.21203/rs.3.rs-3419721/v1.
90. Barrett, J.H., 2022. A radiocarbon revolution sheds light on the Vikings. Nature 601(7893): 326–7, DOI:https://doi.org/10.1038/d41586-021-03769-9.
91. Eisenstein, M., 2023. Seven technologies to watch in 2023. Nature 613(7945): 794–7, DOI:https://doi.org/10.1038/d41586-023-00178-y.
92. Price, M., 2023. Marking time. Science 380(6641): 124–8, DOI:https://doi.org/10.1126/science.adi2032.
93. Dee, M.W., Pope, B.J.S., 2016. Anchoring historical sequences using a new source of astro-chronological tie-points. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2192), DOI:https://doi.org/10.1098/rspa.2016.0263.
94. Helama, S., Mielikäinen, K., Timonen, M., Eronen, M., 2008. Finnish supra-long tree-ring chronology extended to 5634 BC. Norsk Geografisk Tidsskrift 62(4): 271–7, DOI:https://doi.org/10.1080/00291950802517593.
95. Hantemirov, R.M., Shiyatov, S.G., Gorlanova, L.A., Kukarskih, V.V., Surkov, A.Yu., Hamzin, I.R., i dr., 2021. 8768-letnyaya Yamal'skaya drevesno-kol'cevaya hronologiya kak instrument dlya paleoekologicheskih rekonstrukciy. Ekologiya 5(5): 388–97, DOI:https://doi.org/10.31857/S0367059721050085.
96. Heaton, T.J., Bard, E., Ramsey, C.B., Butzin, M., Köhler, P., Muscheler, R., et al., 2021. Radiocarbon: A key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun. Science 374(6568), DOI:https://doi.org/10.1126/science.abd7096.