Moscow, Russian Federation
Moscow, Russian Federation
Irkutsk, Russian Federation
We set up the problem of ponderomotive separation and acceleration of ions with different charge-to-mass ratios under the influence of Alfvén waves, which constantly exist in the magnetosphere in the form of geomagnetic pulsations. Formulas for partial ponderomotive forces acting on light and heavy (metallic) ions are derived. In the quasi-hydrodynamic approximation, a system of equations is obtained which describes the distribution of ions along magnetic field lines in Earth’s magnetosphere. The Clarke number, which characterizes plasma metallicity, is found to be maximum at a minimum magnetic field on the field line along which the Alfvén wave propagates. This leads to the accumulation of heavy ions at the top of the field line at the point of its intersection with the magnetic equator. The theoretical conclusions agree with satellite measurements of the distribution of heavy ions along field lines in Earth’s magnetosphere.
partial ponderomotive forces, Alfvén waves, heavy ions, ambipolar diffusion, geomagnetic field, Clarke number
1. Alfvén H. Cosmical Electrodynamics. Oxford, Clarendon Press, 1950, 238 p.
2. Denton R.E., Takahashi K., Galkin I.A., Nsumei P.A., Huang X., Reinisch B.W., Anderson R.R., Sleeper M.K., Hughes W.J. Distribution of density along magnetospheric field lines. J. Geophys. Res. 2006, vol. 111, A04213. DOI:https://doi.org/10.1029/2005JA011414.
3. Denton M.H., Henderson M.G., Maruyama N., Fuselier S.A. The cold ion population at geosynchronous orbit and transport to the dayside magnetopause: September 2015 to February 2016. J. Geophys. Res.: Space Phys. 2019, vol. 124, pp. 8685–8694. DOI:https://doi.org/10.1029/2019JA026973.
4. Feygin F.Z., Guglielmi A.V. Ponderomotive forces of Alfvén waves in the Earth’s magnetosphere. Izvestiya, Physics of the Solid Earth. 2023, vol. 59, pp. 993–1001. DOI: 10.1134/ S106935132306006X.
5. Fuselier S.A., Klumpar D.M., Peterson W.K., Shelley E.G. Direct injection of ionospheric O+ into the dayside low latitude boundary layer. Geophys. Res. Lett. 1989, vol. 16, pp. 1121–1124. DOI:https://doi.org/10.1029/GL016i010p01121.
6. Fuselier S.A. Ionospheric oxygen ions in the dayside magnetosphere. J. Atmos. Solar-Terr. Phys. 2020, vol. 2010, 105448. DOI:https://doi.org/10.1016/j.jastp.2020.105448.
7. Ginzburg V.L. Propagation of Electromagnetic Waves in Plasma. New-York, Pergamon Press, 1971, 822 p.
8. Guglielmi A.V. MGD volny v okolozemnoi plazme [MHD Waves in the Near-Earth Plasma]. Moscow, Nauka Publ., 1979, 139 p. (In Russian).
9. Guglielmi A.V. Ponderomotive forces in the crust and magnetosphere of the Earth. Fizika Zemli [Izvestiya, Physics of the Solid Earth]. 1992, no. 7, pp. 35–40. (In Russian).
10. Guglielmi A.V., Feygin F.Z. Impact of ponderomotive forces on the Earth’s magnetosphere. Izvestiya, Physics of the Solid Earth. 2018, vol. 54, no. 5, pp. 712–720. DOI:https://doi.org/10.1134/S1069 351318050075.
11. Guglielmi A.V., Potapov A.S. The effect of heavy ions on the spectrum of oscillations of the magnetosphere. Cosmic Res. 2012, vol. 50, no. 4, pp. 263–271. DOI:https://doi.org/10.1134/S0010952512040016.
12. Guglielmi A.V., Potapov A.S. Frequency-modulated ultra-low-frequency waves in near-Earth space. Physics-Uspekhi. 2021, vol. 191, pp. 475–467. DOI:https://doi.org/10.3367/UFNe.2020.06.038777.
13. Guglielmi A.V., Potapov A.S., Russell C.T. The ion cyclotron resonator in the magnetosphere. JETP Letters. 2000, vol. 72, pp. 298–300. DOI:https://doi.org/10.1134/1.1328441.
14. Kronberg E.A., Ashour-Abdalla M., Dandouras I., Delcourt D.C., Grigorenko E.E., Kistler L.M., Kuzichev I.V., et al. Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci. Rev. 2014, vol. 184, pp. 173–235. DOI:https://doi.org/10.1007/s11214-014-0104-0.
15. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Oxford, Pergamon Press, 1984, 417 p.
16. Lifshitz E.M., Pitaevsky L.P. Physical Kinetics. Oxford, Pergamon Press, 1981, 452 p.
17. Lundin R., Guglielmi A. Ponderomotive forces in cosmos. Space Sci. Rev. 2006, vol. 127, pp. 1–116.
18. Nishida A. Geomagnetic Diagnosis of the Magnetosphere. New York, Springer, 1978, 256 p.
19. Nosé M., Ieda A., Christon S.P. Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O+ triggering substorm model. J. Geophys. Res. 2009, vol. 114, A07223. DOI:https://doi.org/10.1029/2009 JA014203.
20. Nosé M., Takahashi K., Anderson R.R., Singer H.J. Oxygen torus in the deep inner magnetosphere and its contribution to recurrent process of O+‐rich ring current formation. J. Geophys. Res. 2011, vol. 116, A10224. DOI:https://doi.org/10.1029/2011JA016651.
21. Potapov A.S., Guglielmi A.V. Acceleration of magnetospheric ions upward by the oscillatory component of the centrifugal force. Solar-Terr. Phys. 2010, iss. 16, pp. 14–18. (In Russian).
22. Potapov A.S., Guglielmi A.V., Polyakov A.R. Ponderomotive forces in the magnetospheric ion cyclotron resonator. Doklady Earth Sciences. 2002, vol. 383, pp. 688–690.
23. Roberts W.T.Jr., Horwitz J.L., Comfort R.H., Chappell C.R., Waite J.H.Jr., Green J.L. Heavy ion density enhancements in the outer plasmasphere. J. Geophys. Res. 1987, vol. 92, pp. 13499–13512. DOI:https://doi.org/10.1029/JA092iA12p13499.
24. Takahashi K., Denton R.E., Anderson R.R., Hughes W.J. Frequencies of standing Alfvén wave harmonics and their implication for plasma mass distribution along geomagnetic field lines: Statistical analysis of CRRES data. J. Geophys. Res. 2004, vol. 109, A08202. DOI:https://doi.org/10.1029/2003JA010345.
25. URL: https://www.aanda.org/glossary/194-metallicity (accessed April 29, 2024)