from 01.01.2014 until now
Apatity, Russian Federation
Moscow, Russian Federation
Apatity, Murmansk, Russian Federation
Apatity, Russian Federation
The paper presents the results of the analysis of auroral hiss bursts, measured at Lovozero and Barentsburg observatories. These points are located on close geomagnetic meridians in the auroral and circumpolar zones. The auroral hiss bursts occur first in the auroral zone at Lovozero Observatory. Then, they fade out smoothly and occur in the circumpolar zone at Barentsburg Observatory. These events are observed when geomagnetic activity and the source of phase scintillation of GPS signals move from auroral to circumpolar latitudes. Analysis of magnetic field polarization and arrival angles of the bursts has shown that the area on the Earth surface, illuminated by hiss bursts, arose at auroral latitudes near Lovozero Observatory, and then moved to higher latitudes. Since propagation of the hiss to the ground and occurrence of GPS signal scintillation requires the presence of electron density irregularities of similar scales in the ionosphere, we assume that the same irregularities could cause both phenomena. A possible cause of their occurrence is the development of current-convective and (or) drift instability in the ionosphere caused by the development of field-aligned currents. Their development is indicated by the simultaneous recording of Pi1B pulsations. The results show that the termination of hiss at auroral latitudes may be caused by a shift of the geomagnetic disturbance region to high latitudes, rather than changes of wave propagation conditions in the ionosphere.
GPS scintillation, auroral hiss, Pi1B pulsations
1. Arnoldy R.L., Posch J.L., Engebretson M.J., Fukunishi H., Singer H.J. Pi1 magnetic pulsations in space and at high latitudes on the ground. J. Geophys. Res. 1998, vol. 103, no. A10, pp. 23581–23591. DOI:https://doi.org/10.1029/98JA01917.
2. Bösinger T., Yahnin A.G. Pi1B type magnetic pulsations as a high time resolution monitor of substorm development. Ann. Geophys.1987, vol. 5, pp. 231–238.
3. Gurnett D.A. A satellite study of VLF hiss. J. Geophys. Res. 1966, vol. 71, no. 23, pp. 5599–5615. DOI:https://doi.org/10.1029/JZ 071i023p05599.
4. Harang L., Larsen R. Radio wave emissions in the v.l.f.-band observed near the auroral zone–I occurrence of emissions during disturbances. J. Atmos. Terr. Phys. 1965, vol. 27, no. 4, pp. 481–497. DOI: 10.1016 /0021-9169(65)90013-9.
5. Heacock R.R. Two subtypes of type Pi micropulsations. J. Geophys. Res. 1967, vol. 72, no. 15, pp. 3905–3917.
6. Hoffman R.A., Laaspere T. Comparison of very-low-frequency auroral hiss with precipitating low-energy electrons by the use of simultaneous data from two Ogo 4 experiments. J. Geophys. Res. 1972, vol. 77, no. 4, pp. 640–650. DOI: 10.1029/ JA077i004p00640.
7. Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and Its Effects on Radio Propagation. N.p.: Cambridge University Press, 2007.
8. Jørgensen T.S. Investigation auroral hiss measured on OGO-2 and Byrd statiion in terms of incoherent Cherenkov radiation. J. Geophys. Res. 1968, vol. 73, pp. 1055–1069. DOI:https://doi.org/10.1029/JA073I003P01055.
9. Kangas J., Pikkarainen T., Golikov Yu., Baransky L., Troitskaya V., Sterlikova V. Burst of irregular magnetic pulsations. J. Gephys. 1979, vol. 46, pp. 237–247.
10. Kelley M.C., Vickrey J.F., Carlson C.W., Torbert R. On the origin and spatial extent of high-latitude F region irregularities. J. Geophys. Res. 1982, vol. 87, no. A6. pp. 4469–4475. DOI:https://doi.org/10.1029/JA087iA06p04469.
11. Kim H., Clauer C.R., Deshpande K., Lessard M.R., Weatherwax A.T., Bust G.S., Crowley G., Humphreys T.E. Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations. J. Atmos. Solar-Terr. Phys. 2014, vol. 114, pp. 1–8. DOI:https://doi.org/10.1016/j.jastp. 2014.03.006.
12. Kintner P.M., Ledvina B.M., de Paula E.R. GPS and ionospheric scintillations. Space Weather. 2007, vol. 5, S09003. DOI:https://doi.org/10.1029/2006SW000260.
13. Kleimenova N.G., Manninen J., Gromova L.M., Gromov S.V., Turunen T. Bursts of auroral-hiss VLF emissions on the Earth’s surface at L~5.5 and geomagnetic disturbances. Geomagnetism and Aeronomy. 2019, vol. 59, pp. 272–280. DOI: 10.1134/ S0016793219030083.
14. Laaspere T., Hoffman R.A. New results on the correlation between low-energy electrons and auroral hiss. J. Geophys. Res. 1976, vol. 81, no. 4, pp. 524–530. DOI:https://doi.org/10.1029/JA081i 004p00524.
15. La Belle J., Treumann R. Auroral radio emissions, 1. Hisses, roars, and bursts. Space Sci. Rev. 2002, vol. 101, no. 3, pp. 295–440. DOI:https://doi.org/10.1023/A:1020850022070.
16. Lebed’ O.M., Fedorenko Y.V., Manninen J., Kleimenova N.G., Nikitenko A.S. Modeling of the auroral hiss propagation from the source region to the ground. Geomagnetism and Aeronomy. 2019, vol. 59, pp. 577–586. DOI:https://doi.org/10.1134/S0016793219050074.
17. Maggs J.E. Coherent generation of VLF hiss. J. Geophys. Res. 1976, vol. 81, pp. 1707–1724. DOI:https://doi.org/10.1029/JA081 i010p01707.
18. Makita K. VLF/LF hiss emissions associated with aurora. Mem. Nat. Inst. Polar Res. 1979, Tokyo. Ser. A. No. 16, pp. 1–126.
19. Manninen J., Kleimenova N., Kozlovsky A., Fedorenko Y., Gromova L., Turunen T. Ground-based auroral hiss recorded in Northern Finland with reference to magnetic substorms. Geophys. Res. Lett. 2020, vol. 47, e2019GL086285. DOI:https://doi.org/10.1029/2019GL086285.
20. Mosier S.R., Gurnett D.A. Observed correlations between auroral and VLF emissions. J. Geophys. Res. 1972, vol. 77, no. 7, pp. 1137–1145. DOI:https://doi.org/10.1029/JA077i007p01137.
21. Nikitenko A.S., Manninen J., Fedorenko Y.V., Kleimenova N.G., Kuznetsova M.V., Larchenko A.V., et al. Spatial structure of the illuminated area of the auroral hiss based on ground-based observations at auroral latitudes. Geomagnetism and Aeronomy. 2022, vol. 62, pp. 209–216. DOI:https://doi.org/10.1134/S00 16793222030124.
22. Nikitenko A.S., Fedorenko Y.V., Manninen J., Lebed O.M., Beketova E.B. Modeling the spatial structure of the auroral hiss and comparing results to observations. Bull. Russ. Acad. Sci. Phys. 2023, vol. 87, pp. 112–117. DOI:https://doi.org/10.3103/S106 2873822700265.
23. Nikitenko A.S., Fedorenko Y.V., Kleimenova N.G. Simultaneous observations of the very low frequency auroral hiss, auroras, and irregular geomagnetic pulsations at the Lovozero Observatory. Bull. Russ. Acad. Sci. Phys. 2024, vol. 88, pp. 338–344. DOI:https://doi.org/10.1134/S1062873823705494.
24. Oksavik Kjellmar. The University of Bergen Global Navigation Satellite System Data Collection. Dataverse NO. 2020. DOI:https://doi.org/10.18710/AJ4S-X394.
25. Ozaki M., Yagitani S., Nagano I., Hata Y., Yamagishi H., Sato N., Kadokura A. Localization of VLF ionospheric exit point by comparison of multipoint ground-based observation with full-wave analysis. Polar Sci. 2008, vol. 2, no. 4, pp. 237–249. DOI:https://doi.org/10.1016/j.polar.2008.09.001.
26. Pilgaev S.V., Larchenko A.V., Filatov M.V., Fedorenko Y.V. A function generator for calibration of electromagnetic-field recorders.Instrum Exp Tech. 2018, vol. 61, pp. 809–814. DOI:https://doi.org/10.1134/S0020441218060106.
27. Pilgaev S.V., Larchenko A.V., Fedorenko Y.V., Filatov M.V., Nikitenko A.S. A three-component very-low-frequency signal receiver with precision data synchronization with universal time. Instrum Exp Tech. 2021, vol. 64, pp. 744–753. DOI:https://doi.org/10.1134/S00 20441221040229.
28. Raspopov O.M., Troitskaya V.A. The development of a subburst in geomagnetic pulsations. Collected Papers “High-Latitude Geomagnetic Research”. Leningrad, 1974, pp. 232–247. (In Russian).
29. Rytov S. Introduction to Statistical Radiophysics. Moscow, Nauka Publ., 1966. (In Russian).
30. Sazhin S.S., Bullough K., Hayakawa M. Auroral hiss: a review. Planet. Space Sci. 1993, vol. 41, pp. 153–166. DOI:https://doi.org/10.1016/0032-0633(93)90045-4.
31. Sonwalkar V.S., Harikumar J. An explanation of ground observations of auroral hiss: Role of density depletions and meter-scale irregularities. J. Geophys. Res.: Space Phys. 2000, vol. 105, no. A8, pp. 18867–18883. DOI:https://doi.org/10.1029/1999JA000302.
32. Spasojevic M. Statistics of auroral hiss and relationship to auroral boundaries and upward current regions. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 7547–7560. DOI: 10.1002/ 2016JA022851.
33. Stix T. Waves in Plasmas. American Inst. of Physics. 1992.
34. Wilhelm K., Münch J.W., Kremser G. Fluctuations of the auroral zone current system and geomagnetic pulsations. J. Geophys. Res. 1977, vol. 82, no. 19, pp. 2705–2716. DOI: 10.1029/ JA082i019p02705.
35. URL: http://space.fmi.fi/image (accessed April 22, 2024).
36. URL: https://space.fmi.fi/MIRACLE/ASC/asc_keograms_00.shtml (accessed April 22, 2024).
37. URL: https://www.sgo.fi/Data/Riometer/riometer.php (accessed April 22, 2024).