Russian Federation
Pushchino, Moscow, Russian Federation
Institute of Space Researches of the Russian Academy of Sciences
Moscow, Moscow, Russian Federation
UDK 52-854 Магнитосфера
UDK 533.951.7 Турбулентность плазмы
UDK 520.64 Плазменные анализаторы (in situ)
UDK 52-14 Результаты анализа и оценки наблюдений и измерений
The work analyzes dependences of eddy diffusion coefficients in the X, Y, and Z directions of the GSM coordinate system on the plasma parameter β, taking into account the distance from Earth, the direction of the interplanetary magnetic field, and conditions of geomagnetic activity in the magnetotail according to MMS mission data. These parameters are determined by root-mean-square velocities of ions and their autocorrelation time. Eddy diffusion coefficients characterize the magnitude of turbulent transport in the magnetotail and are the parameters of the model of turbulent plasma sheet. We have analyzed more than 20000 12-min intervals during which the MMS satellites were located within a region with plasma density more than 0.1 cm–3 and average ion energy more than 0.5 keV. It is shown that as the plasma parameter increases, the eddy diffusion coefficients increase as well. This increase stops at β~1. Analysis of the relative contribution of changes in root-mean-square velocity and autocorrelation time to the eddy diffusion coefficient has revealed that there is no significant dependence on autocorrelation time.
magnetospheric turbulence, turbulent transport, coefficients of eddy diffusion
1. Alexandrova O., Chen C.H.K., Sorriso-Valvo L., Horbury T.S., Bale S.D. Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 2013, vol. 178, pp. 101–139. DOI:https://doi.org/10.1007/s11214-013-0004-8.
2. Angelopoulos V., Kennel C.F., Coroniti F.V., Pellat R., Spence H.E., Kivelson M.G., Walker R.J., Baumjohann W., Feldman W.C., Gosling J.T. Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 1993, vol. 20, no 16, pp. 1711–1714. DOI:https://doi.org/10.1029/93GL00847.
3. Angelopoulos V., Mukai T., Kokubun S. Evidence for intermittency in Earth's plasma sheet and implications for selforganized criticality. Phys. Plasmas. 1999, vol. 6, no 11, pp. 4161–4168. DOI:https://doi.org/10.1063/1.873681.
4. Antonova E.E. On nonadiabatic diffusion and adjustment of concentration and temperature in the plasma sheet of the Earth’s magnetosphere. Geomagnetism and Aeronomy. 1985, vol. 2, no. 4, pp. 623–627, (In Russian).
5. Antonova E.E. Quasiturbulent transport and LLBL properties. Adv. Space Res. 2006, vol. 37, pp. 532–536. DOI: 10.1016/ j.asr.2006.01.019.
6. Antonova E.E., Ovchinnikov I.L. T Turbulent current sheets and magnetospheric substorms. Proc. International Conference on Substorms. Versailles, 12–17 May 1996a. ESA SP-389. Paris: European Space Agency, 1996a. P. 255.
7. Antonova E.E., Ovchinnikov I.L. Equilibrium of a turbulent current sheet and the current sheet of geomagnetic tail. Geomagnetism and Aeronomy. 1996b, vol. 36, no. 5, pp. 597–601.
8. Antonova E.E., Ovchinnikov I.L. Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence: structure and implications for substorm dynamics. J. Geophys. Res. 1999, vol. 104, no. A8, pp. 17289–17297. DOI: 10.1029/ 1999JA900141.
9. Antonova E.E., Stepanova M.V. The impact of turbulence on physics of the geomagnetic tail. Front. Astron. Space Sci. 2021, vol. 8, 622570. DOI:https://doi.org/10.3389/fspas.2021.622570.
10. Borovsky J.E. Plasma and magnetic-field structure of the solar wind at inertial-range scale. Sizes discerned from statistical examinations of the time-series measurements. Front. Astron. Space Sci. 2020, vol. 7, 20. DOI:https://doi.org/10.3389/fspas.2020.00020.
11. Borovsky J.E., Funsten H.E. MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation and driving. J. Geophys. Res. 2003, vol. 107, no. A7. DOI:https://doi.org/10.1029/2002JA009625.
12. Borovsky J.E., Elphic R.C., Funsten H.O., Thomsen M.F. The Earth’s plasma sheet as a laboratory for turbulence in high-β MHD. J. Plasma Phys. 1997, vol. 57, no. 1, pp. 1–34. DOI:https://doi.org/10.1017/S0022377896005259.
13. Borovsky J.E., Thomsen M.F., Elphic R.C. The driving of the plasma sheet by the solar wind. J. Geophys. Res. 1998, vol. 103, no. A8, pp. 17617–17639. DOI:https://doi.org/10.1029/97JA02986.
14. Bruno R., Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Solar Phys. 2013, vol. 10, pp. 1–208. DOI:https://doi.org/10.12942/lrsp-2013-2.
15. Budaev V.P., Zeleny L.M., Savin S.P. Generalized self-similarity of intermittent plasma turbulence in space and laboratory plasmas. J. Plasma Phys. 2015, vol. 81, 395810602. DOI:https://doi.org/10.1017/S0022377815001099.
16. Burch J.L., Moore T.E., Torbert R.B., Giles B.L. Magnetospheric Multiscale overview and science objectives. Space Sci. Rev. 2016, vol. 199, no. 1-4, pp. 5–21. DOI:https://doi.org/10.1007/s11214-015-0164-9.
17. Eyelade A.V., Espinoza C.M., Stepanova M., Antonova E.E., Ovchinnikov I.L., Kirpichev I.P. Influence of MHD turbulence on ion kappa distributions in the Earth’s plasma sheet as a function of plasma β parameter. Front. Astron. Space Sci. 2021, vol. 8, 647121. DOI:https://doi.org/10.3389/fspas. 2021.647121.
18. Eyelade A.V., Stepanova M., Espinoza C.M., Antonova E.E., Kirpichev I.P. The response of the Earth magnetosphere to changes in the solar wind dynamic pressure: 1. Plasma and magnetic pressures. J. Geophys. Res.: Space Phys. 2024a, vol. 129, e2023JA031948. DOI:https://doi.org/10.1029/2023JA031948.
19. Eyelade A.V., Stepanova M., Espinoza C.M., Antonova E.E., Kirpichev I.P. The response of the magnetosphere to changes in the solar wind dynamic pressure: 2. Ion and electron kappa distribution functions. J. Geophys. Res.: Space Phys. 2024b, vol. 129, e2023JA031949. DOI:https://doi.org/10.1029/2023JA031949.
20. Iijima T., Potemra T.A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 1976, vol. 81, no.13, pp. 2165–2174. DOI:https://doi.org/10.1029/JA081i013p02165.
21. Montgomery D. Remarks on the MHD problem of generic magnetospheres and magnetotails. Magnetotail Phys. Johns Hopkins University Press, Baltimore. Md. 1987, pp. 203–204.
22. Nagata D., Machida S., Ohtani S., Saito Y., Mukai T. Solar wind control of plasma number density in the near Earth plasma sheet: three-dimensional structure. Ann. Geophys. 2008, vol. 26, no. 12, pp. 4031–4049. DOI:https://doi.org/10.5194/angeo-26-4031-2008.
23. Naiko D.Yu., Ovchinnikov I.L, Antonova E.E. Spatial distribution of the eddy diffusion coefficient in the plasma sheet of Earth’s magnetotail and its dependence on the interplanetary magnetic field and geomagnetic activity based on MMS satellite data. Geomagnetism and Aeronomy. 2024, vol. 64, no. 2, pp. 172–179. DOI:https://doi.org/10.1134/S0016793223600996.
24. Newell P.T., Gjerloev J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 2011, vol. 116, A12211. DOI: 10.1029/ 2011JA016779.
25. Ovchinnikov I.L., Antonova E.E. Turbulent transport of the Earth magnetosphere: Review of the results of observations and modeling. Geomagnetism and Aeronomy. 2017, vol. 57, no. 6, pp. 655–663. DOI:https://doi.org/10.1134/S0016793217060081.
26. Ovchinnikov I.L., Antonova E.E., Yermolaev Yu.I. Determination of the turbulent diffusion coefficient in the plasma sheet using the project INTERBALL data. Cosmic Res. 2000, vol. 38, no. 6, pp. 557–561. (In Russian).
27. Ovchinnikov I.L., Antonova E.E., Yermolaev Yu.I. Turbulence in the plasma sheet during substorms: A case study for three events observed by the INTERBALL Tail probe. Cosmic Res. 2002a, vol. 40, no. 6, pp. 521–528. (In Russian).
28. Ovchinnikov I.L., Antonova E.E., Yermolaev Yu.I. Plasma sheet heating during substorm and the values of the plasma sheet diffusion coefficient obtained on the base of Interball/Tail probe observations. Adv. Space Res. 2002b, vol. 30, no. 7, pp. 1821–1824. DOI:https://doi.org/10.1016/S0273-1177(02)00456-8.
29. Ovchinnikov I.L, Naiko D.Yu., Antonova E.E. Fluctuations of the electric and magnetic fields in the plasma sheet of the Earth’s magnetotail according to MMS data. Cosmic Res. 2024, vol. 62, no. 1, pp. 10–33. DOI:https://doi.org/10.1134/S0010952523700788.
30. Pinto V., Stepanova M., Antonova E.E., Valdivia J.A. Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, no. 7, pp. 1472–1477. DOI:https://doi.org/10.1016/j.jastp.2011. 05.007.
31. Podesta J.J., Borovsky J.E. Scale invariance of normalized cross-helicity throughout the inertial range of solar wind turbulence. Phys. Plasmas. 2010, vol. 17, no 11, 112905. DOI:https://doi.org/10.1063/1.3505092.
32. Pollock C., Moore T., Jacques A., Burch J., Gliese U., Saito Y., et al. Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 2016, vol. 199, no. 1-4, pp. 331–406. DOI:https://doi.org/10.1007/s11214-016-0245-4.
33. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic-scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res.: Space Phys. 2018, vol. 123, no. 7, pp. 5300–5314. DOI: 10.1029/ 2018JA025179.
34. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y., Lodkina I. Dynamics of plasma turbulence at Earth’s bow shock and through the magnetosheath. Astrophys. J. 2020, vol. 901, no. 30. DOI:https://doi.org/10.3847/1538-4357/abae00.
35. Rakhmanova L.S., Khokhlachev A.A., Riazantseva M.O., Yermolaev Yu.I., Zastenker G.N. Development of turbulence behind a near-Earth shock wave during periods of calm and disturbed solar wind. Solar-Terr. Phys. 2024, vol. 10, no. 2, pp. 15–28. DOI:https://doi.org/10.12737/stp-102202402.
36. Riazantseva M., Budaev V., Rakhmanova L., Zastenker G., Yermolaev Y., Lodkina I., et al. Variety of shapes of solar wind ion flux spectra: Spektr-R measurements. J. Plasma Phys. 2017, vol. 83, no. 04, 705830401. DOI:https://doi.org/10.1017/S0022377817000502.
37. Sahraoui F., Hadid L., Huang S. Magnetohydrodynamic and kinetic scale turbulence in the near Earth space plasmas: a (short) biased review. Rev. Modern Plasma Phys. 2020, vol. 4, no. 4. DOI:https://doi.org/10.1007/s41614-020-0040-2.
38. Stepanova M., Antonova E.E. Modeling of the turbulent plasma sheet during quiet geomagnetic conditions. J. Atmos. Solar-Terr. Phys. 2011. Vol. 73, no. 8. P. 1636–1642. DOI:https://doi.org/10.1016/j.jastp.2011.02.009.
39. Stepanova M.V., Vucina-Parga T., Antonova E.E., Ovchinnikov I.L., Yermolaev Yu.I. Variation of the plasma turbulence in the central plasma sheet during substorm phases observed by the Interball/tail satellite. J. Atmos. Solar-Terr. Phys. 2005, vol. 67, no. 11, pp. 1815–1820. DOI:https://doi.org/10.1016/j.jastp.2005.01.013.
40. Stepanova M., Antonova E.E., Paredes-Davis D., Ovchinnikov I.L., Yermolaev Y. Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms. Ann. Geophys. 2009, vol. 27, no. 4, pp. 1407–1411. DOI: 10.5194/ angeo-27-1407-2009.
41. Stepanova M., Pinto V., Valdivia J.A., Antonova E.E. Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data. J. Geophys. Res. 2011, vol. 116, no. 1, DOI:https://doi.org/10.1029/2010JA015887.
42. Torbert R.B., Russell C.T., Magnes W., Ergun R.E., Lindqvist P.-A., LeContel O., et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci. Rev. 2016, vol. 199, no. 1-4, pp. 105–135. DOI:https://doi.org/10.1007/s11214-014-0109-8.
43. Troshichev O.A., Antonova E.E., Kamide Y. Inconsistence of magnetic field and plasma velocity variations in the distant plasma sheet: violation of the “frozen-in” criterion? Adv. Space Res. 2002, vol. 30, no 12, pp. 2683–2687. DOI:https://doi.org/10.1016/S0273-1177(02)80382-9.
44. Tu C.Y., Marsch E. Magnetohydrodynamic structures waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 1995, vol. 73, no. 1-2, pp. 1–210. DOI:https://doi.org/10.1007/BF00748891.
45. Volwerk M., Vörös Z., Baumjohann W., Nakamura R., Runov A., T.L. Zhang, et al. Multi-scale analysis of turbulence in the Earth’s current sheet. Ann. Geophys. 2004, vol. 22, no. 7, pp. 2525–2533. DOI:https://doi.org/10.5194/angeo-22-2525-2004.
46. Vörös W., Baumjohann W., Nakamura R., Runov A., Zhang T.L., Volwerk M., et al. Multi-scale magnetic field intermittence in the plasma sheet. Ann. Geophys. 2003, vol. 21, no. 9, pp. 1955–1964. DOI: 10.5194/ angeo-21-1955-2003.
47. Vörös Z., Baumjohann W., Nakamura R., Volwerk M., et al. Magnetic turbulence in the plasma sheet. J. Geophys. Res. 2004, vol. 109, no. 11. DOI:https://doi.org/10.1029/2004JA010404.
48. Vörös Z., Baumjohann W., Nakamura R., Volwerk M., Runov A. Bursty bulk flow driven turbulence in the Earth’s plasma sheet. Space Sci. Rev. 2006, vol. 122, no. 1-4, pp. 301–311. DOI:https://doi.org/10.1007/s11214-006-6987-7.
49. Vörös Z., Baumjohann W., Nakamura R., Volwerk M., Volwerk M., Asano Y., Jankovičová D., Lucek E.A., Rème H. Spatial structure of plasma flow associated turbulence in the Earth’s plasma sheet. Ann. Geophys. 2007, vol. 25, no. 2, pp. 13–17. DOI:https://doi.org/10.5194/angeo-25-13-2007.
50. Wang C.-P., Lyons L.R., Nagai T., Weygand J.M., Lui A.T.Y. Evolution of plasma sheet particle content under different interplanetary magnetic field conditions. J. Geophys. Res. 2010, vol. 115, no. 6. DOI:https://doi.org/10.1029/2009JA015028.
51. Weygand J.M., Kivelson M.G., Khurana K.K., Schwarzl H.K., Thompson S.M., McPherron R.L., et al. Plasma sheet turbulence observed by Cluster II. J. Geophys. Res. 2005, vol. 110, no. 2. DOI:https://doi.org/10.1029/2004JA010581.
52. Yermolaev Y.I., Petrukovich A.A., Zelenyi L.M., Antonova E.E., Ovchinnikov I.L., Sergeev V.A. Investigation of the structure and dynamics of the plasma sheet: the CORALL experiment of the INTERBALL project. Cosmic Res. 1995, vol. 38, no. 1, pp. 16–22. (In Russian).
53. Yordanova E., Vaivads A., André M., Buchert S.C., Vörös Z. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Phys. Rev. Lett. 2008, vol. 100, 205003. DOI:https://doi.org/10.1103/PHYSREVLETT.100. 205003.
54. URL: https://lasp.colorado.edu/mms/sdc/public/data/ (accessed November 26, 2024).
55. URL: https://omniweb.gsfc.nasa.gov/ (accessed November 26, 2024).
56. URL: https://supermag.jhuapl.edu/info/ (accessed November 26, 2024).
57. URL: http://space.fmi.fi/image (accessed November 26, 2024).