EXPANSION OF FORMATION OPTIONS LINEAR SURFACES
Abstract and keywords
Abstract (English):
When solving large geometric problems, in some cases there is a need to solve smaller auxiliary problems. So, when expanding the options for forming ruled surfaces, a solution arose for constructing a plane or a straight line at certain angles of inclination to the planes of projections or to some given plane of general position. The article presents this related task of constructing a plane, as well as building a straight line using a sphere. The basis for constructing a plane and a straight line at certain angles to the projection planes is the application of a contiguous cone of rotation to an arbitrarily specified sphere. The same method is already used to construct a straight line and a plane to a given plane of general position, taking into account that this plane is tangent to some given surface. All constructions of linear surfaces are based on the principle of specifying three guides and three conditions limiting each of the generators in relation to the specified guides. The condition of passing the guide at certain angles to the surfaces expands the possibilities of designing ruled surfaces almost indefinitely.

Keywords:
geometry, engineering geometry, kinetic geometry, descriptive geometry, metric tasks
Text
Text (PDF): Read Download
References

1. Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A. Beglov, E.V. Solomonova // Geometriya i grafika. 2019. — T. 7. — № 3. S. 36–50. — DOI:https://doi.org/10.12737/article_5dce66dd9fb966.59423840 EDN: https://elibrary.ru/UIIASI

2. Beglov I.A. Matematicheskoe opisanie metoda vrascheniya tochki vokrug krivolineynoy osi vtorogo poryadka [Tekst] / I.A. Beglov, V.V. Rustamyan, I.V. Antonova // Geometriya i grafika. — 2018. — T. 6. — № 4. — S. 39–46. DOI:https://doi.org/10.12737/article_5c21f6e832b4d2.25216268 EDN: https://elibrary.ru/YTZUYX

3. Beglov I.A. Poverhnosti kvazivrascheniya i ih primenenie v parametricheskoy arhitekture [Tekst]: dis. … kand. tehn. nauk: 05.01.01 / I.A. Beglov. — Omsk, 2022. 200 s. EDN: https://elibrary.ru/EXDWCY

4. Voloshinov D.V. Vizual'no-graficheskoe proektirovanie edinoy konstruktivnoy modeli dlya resheniya analogov zadachi Apolloniya s uchetom mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya igrafika. — 2018. — T. 6. — № 2. — S. 23–46. — DOI:10.12737/ article_5b559c70becf44.21848537 DOI: https://doi.org/10.12737/article_5b559c70becf44.21848537; EDN: https://elibrary.ru/XVRAKL

5. Voloshinov D.V. Edinyy konstruktivnyy algoritm postroeniya fokusov krivyh vtorogo poryadka obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. 2018. — T. 6. — № 2. — S. 47–54. — DOI: 10.12737/ article_5b559dc3551f95.26045830 DOI: https://doi.org/10.12737/article_5b559dc3551f95.26045830; EDN: https://elibrary.ru/UWFDPX

6. Voloshinov D.V. Ob osobennostyah konstruktivnogo resheniya zadachi o sferah Dandelena [Tekst] / D.V. Voloshinov // Geometriya i grafika. — 2018. — T. 6. — № 2. S.55–62.—DOIhttps://doi.org/10.12737/article_5b559f018f85a7.77112269 EDN: https://elibrary.ru/XVRALB

7. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Tekst] / V.I. Vyshnepol'skiy, N.A. Sal'kov, E.V. Zavarihina // Geometriya i grafika. — 2017. — T. 5. — № 3. — S. 21–35. — DOI: 10/12737/ article_59fa3beb72932.73328568 DOI: https://doi.org/10.12737/article_59bfa3beb72932.73328568; EDN: https://elibrary.ru/ZGWELV

8. Girsh A.G. Mnimosti v geometrii [Tekst] / A.G. Girsh // Geometriya i grafika. — 2014. — T. 2. — № 2. — C. 3–8. DOI:https://doi.org/10.12737/5583 EDN: https://elibrary.ru/SPDZTT

9. Grafskiy O.A. Geometriya elektrostaticheskih poley [Tekst] / O.A. Grafskiy, Yu.V. Ponomarchuk, A.A. Holodilov // Geometriya i grafika. — 2018. — T. 6. — № 1. – C. 10–19. DOI: https://doi.org/10.12737/article_5ad085a6d75bb5.99078854; EDN: https://elibrary.ru/YWMSCG

10. Grohot-pitatel': avtorskoe svidetel'stvo 1025461 SSSR; MKI V 07 V 1/16 / N.A. Sal'kov (SSSR). № 3333233/29-03; zayavlen 25.06.81; opublikovan 30.06.83. Byulleten' № 24. — 3 s.

11. Dvuhchervyachnyy smesitel' dlya pastoobraznyh materialov: avtorskoe svidetel'stvo 1199625 SSSR: MKI V 29 V 7/42, V 29 S 47/40 / N.A. Sal'kov (SSSR). № 3773765/23-05; zayavlen 23.07.84; opublikovan 23.12.85. Byulleten' № 47. — 3 s.

12. Zhiharev L.A. Geometricheskie metody optimizacii topologii konstruktivnyh elementov na osnove teorii fraktalov [Tekst]: avtoref. … dis. kand. tehn. nauk: 2.5.1 / L.A. Zhiharev. — Nizhniy Novgorod, 2023. — 22 s.

13. Zhiharev L.A. Primenenie krivoy Koha dlya povysheniya prochnosti detaley samoleta [Tekst] / L.A. Zhiharev // Geometriya i grafika. — 2022. — T. 10. — № 4. — S. 13–25. — DOI:https://doi.org/10.12737/2308-4898-2022-10-4-13-25 EDN: https://elibrary.ru/IBVGNT

14. Kamalov A. Konstruirovanie lineychatyh poverhnostey karkasno-parametricheskim metodom i ih primenenie [Tekst]: avtoref. dis. … kand. tehn. nauk: 2.5.1 / A. Kamalov. — Samarkand, 1980. — 16 c.

15. Kokareva Ya.A. Sintez uravneniy lineychatyh poverhnostey s dvumya krivolineynymi i odnoy pryamolineynoy napravlyayuschimi [Tekst] / Ya.A. Kokareva // Geometriya i grafika. — 2018. — T. 6. — № 3. — S. 3–12. — DOI:https://doi.org/10.12737/article_5c21f4a06dbb74.56415078 DOI: https://doi.org/10.12737/article_5bc454948a7d90.80979486; EDN: https://elibrary.ru/VLKNDE

16. Kononov P.V. Principy postroeniya geometricheskih modeley nanoklasterov po tetraedricheskoy linii [Tekst] / P.V. Kononov, I.E. Kononova, O.N. Moroz // Geometriya i grafika. — 2022. — T. 10. — № 3. — S. 12–22. — DOI:https://doi.org/10.12737/2308-4898-2022-10-3-12-22 EDN: https://elibrary.ru/EFINVO

17. Korotkiy V.A. Approksimaciya fizicheskogo splayna s bol'shimi progibami [Tekst] / V.A. Korotkiy // Geometriya i grafika. — 2022. — T. 10. — № 3. — S. 23–34. DOI:https://doi.org/10.12737/2308-4898-2021-9-1-3-18 DOI: https://doi.org/10.12737/2308-4898-2022-10-3-23-34; EDN: https://elibrary.ru/UCZODI

18. Niteyskiy A.S. Konstruirovanie torsovoy poverhnosti metodom podvizhnogo trehgrannika Frene [Tekst] / A.S. Niteyskiy // Omskiy nauchnyy vestnik. — 2013. № 2. — S. 151–153. EDN: https://elibrary.ru/RNEIEX

19. Pilipaka S.F. Konstruirovanie lineychatyh poverhnostey obschego vida v sisteme soprovoditel'nogo trehgrannika napravlyayuschey prostranstvennoy krivoy [Tekst] / S.F. Pilipaka, N.N. Mukvich // Trudy Tavricheskoy gosudarstvennoy agrotehnicheskoy akademii. — Melitopol': Izd-vo TDATU, 2007. — № 4. Prikladnaya geometriya i inzh. grafika. — T. 35. S. 10–18.

20. Rachkovskaya G.S. Geometricheskoe modelirovanie i grafika kinematicheskih lineychatyh poverhnostey na osnove triady kontaktiruyuschih aksoidov [Tekst] / G.S. Rachkovskaya // Geometriya i grafika. — 2016. T. 4. — № 3. — S. 46–52. — DOI:https://doi.org/10.12737/21533 EDN: https://elibrary.ru/UFWTYX

21. Sal'kov N.A. Vvedenie v kineticheskuyu geometriyu [Tekst] / N.A. Sal'kov. — M.: INFRA-M, 2016. — 142 s.

22. Sal'kov N.A. Geometricheskaya sostavlyayuschaya tehnicheskih innovaciy [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2018. — T. 6. — № 2. — C. 85–93. — DOIhttps://doi.org/10.12737/article_5b55a5163fa053.07622109. EDN: https://elibrary.ru/XVRALZ

23. Sal'kov N.A. Modelirovanie avtomobil'nyh dorog [Tekst]: monografiya / N.A. Sal'kov. — M.: INFRA-M, 2012. — 120 s. EDN: https://elibrary.ru/VERUPR

24. Sal'kov N.A. Nachertatel'naya geometriya — baza dlya komp'yuternoy grafiki [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2016. — T. 4. — № 2. — S. 37–47. — DOI:https://doi.org/10.12737/19832 EDN: https://elibrary.ru/WJEJOL

25. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 1 [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2018. — T. 6. — № 4. — S. 20–31. DOI: https://doi.org/10.12737/article_5c21f4a06dbb74.56415078; EDN: https://elibrary.ru/YTZUXZ

26. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 2 [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2019. — T. 7. — № 1. — S. 14–27. — DOIhttps://doi.org/10.12737/article_5c9201eb1c5f06.47425839 EDN: https://elibrary.ru/ZBHCLZ

27. Sal'kov N.A. Ellips: kasatel'naya i normal' [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2013. — T. 1. № 1. — C. 35–37. — DOI:https://doi.org/10.12737/470 EDN: https://elibrary.ru/RDFXPV

28. Sal'kov N.A. Ciklida Dyupena i ee prilozhenie [Tekst] / N.A. Sal'kov. — M.: INFRA-M, 2016. — 142 s. DOI: https://doi.org/10.12737/18824; EDN: https://elibrary.ru/WBVAGJ

29. Sal'kov N.A., Voloshinov D.V. Parabola. Svidetel'stvo o registracii programmy dlya EVM RU 2020614640. Zayavka № 2020612401 ot 04 marta 2020.

30. Sal'kov N.A., Voloshinov D.V. Giperbola. Svidetel'stvo o registracii programmy dlya EVM RU 2020616015. Zayavka № 2020612357 ot 04 marta 2020.

31. Sal'kov N.A., Voloshinov D.V. Ellips. Svidetel'stvo o registracii programmy dlya EVM RU 2020616140. Zayavka № 2020612388 ot 04 marta 2020.

32. Sposob profilirovaniya avtomobil'nyh dorog: avtorskoe svidetel'stvo 1714046 SSSR. MKI4 E 02 F 1/00 / Sal'kov N.A. (SSSR) — № 1714046 A1; zayavleno 27.04.89, opublikovano 23.02.92, Byulleten' № 7, 1992. — 6 s.

33. Stanok Sal'kovyh dlya obrabotki mnogogrannyh poverhnostey: avtorskoe svidetel'stvo 1505669 SSSR, MKI4 V 23 V 5/44 / Sal'kov N.A., Sal'kov A.V., Sal'kova V.A. (SSSR). — № 4293668/31-08; zayavleno 01.06.87; opublikovano 07.09.89, Byulleten' № 33. — 4 s.

34. Strashnov S.V. Velarodal'nye obolochki i obolochki velaroidal'nogo tipa [Tekst] / S.V. Strashnov // Geometriya i grafika. — 2022. — T. 10. — № 2. — S. 11–19. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-11-19 EDN: https://elibrary.ru/AICWIR

35. Shvidenko Yu.Z. Sopryazheniya lineychatymi poverhnostyami i ih primenenie dlya konstruirovaniya obolochek [Tekst]: avtoref. dis. … kand. tehn. nauk / Yu.Z. Shvidenko. — Kiev, 1966. — 14 c.

36. Scheglov G.A. O geometricheskoy interpretacii kvaternionov konusami [Tekst] / G.A. Scheglov // Geometriya i grafika. — 2022. — T. 10. — № 3. — S. 23–34. — DOI:https://doi.org/10.12737/2308-4898-2022-10-3-23-34 EDN: https://elibrary.ru/UCZODI

37. Sal’kov N.A., Ivanov G.S., Slavin R.B. Areas of existence of ruled surfaces. IOP Conf. Series: Journal of Physics: Conf. Series 1260 (2019) 072018. DOIhttps://doi.org/10.1088/1742-6596/1546/1/012042

38. Sal’kov N.A. Visualization of the Ruled surfaces of General Type / N.A. Salkov // IOP Conf. Series: Journal of Physics: Conf. Ser. 1441 (2020) 012078. DOI:https://doi.org/10.1088/17426596/1441/1/012078 DOI: https://doi.org/10.1088/1742-6596/1441/1/012078; EDN: https://elibrary.ru/EAAJLI

39. Sal’kov N.A. Application of the Dupin cyclide in temple architecture / N.A. Salkov // IOP Conf. Series: Journal of Physics: Conf. Series 1546 (2020) 012042

40. Sal’kov N.A. Setting of the Dupin cyclide by three straight lines and sphere / N.A. Salkov // IOP Conf. Series: Journal of Physics: Conf. Ser. 1791 (2021) 012060. DOI:https://doi.org/10.1088/1742-6596/1791/1/012060 EDN: https://elibrary.ru/MNPEJB

Login or Create
* Forgot password?