employee
Voronej, Voronezh, Russian Federation
employee
Voronezh, Russian Federation
employee
Voronezh, Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Modification of the growth dynamics model of the total biomass of forest stands is focused on using the age of physiological maturity (ripeness), which, as shown by previous calculations, is a constant for each species: Pinus sylvestris L., Picea abies (L.) H.Karst. and Pinus sibirica Du Tour. Validation of the modified model was carried out for coniferous stands – spruce, pine and cedar, biologically related. For stands of P. sylvestris, P. abies and P. sibirica is an allometric parameter that characterizes the relationship of biomass with the area of planting, does not depend on the class of bonus and is a constant for each species. The behavior of the parameter that characterizes the rate of resource consumption is individual for each type. For stands of P. abies, this parameter increases, and for P. sylvestris decreases with increasing bonus, for stands of P. sibirica, this dependence turns out to be nonlinear. In the future, this circumstance needs additional research. The statistical Nash-Sutcliffe criterion showed high accuracy (by coniferous stands of the second site class NSE = 0.9987 for P. sylvestris, NSE = 0.9828 for P. abies and NSE = 0.9781 for P. sibirica) of the modified model. Compared with similar calculations that do not take into account the age of physiological maturity, the quality of the modified model has increased by an order of magnitude. For all types of coniferous stands, the relative deviation of the calculation from empirical data was additionally calculated, which in general amounted to 1-2%, with the exception of ages lower than the physiological age of maturity. For these ages, the relative deviation increased to 5%, which, according to the authors, is associated with the processes of formation of coniferous plantations as an ecological system.
model of the stand’s dynamics, Scots pine, Pinus sylvestris L., European spruce, Picea abies L., Siberian pine, Pinus sibirica Du Tour, pine stands, spruce stands, cedar stands
1. Reid W. V., Mooney H. A. The millennium ecosystem assessment: testing the limits of interdisciplinary and multi-scale science. Ecology, Economy and Society; V. Dayal et al. eds. Singapore : Springer Singapore, 2018; 4: 49-61. DOI: https://doi.org/10.1007/978-981-10-5675-8_4.
2. Harris N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change. 2021; 11 (3): 234-240. DOI: https://doi.org/10.1038/s41558-020-00976-6.
3. Song, X.-P. et al. Global land change from 1982 to 2016. Nature. 2018; 560 (7720): 639-643. DOI: https://doi.org/10.1038/s41586-018-0411-9.
4. Novikov A. I. et al. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture. Data. 2019; 4 (3): 106. DOI: https://doi.org/10.3390/data4030106.
5. Novikova T. P. Study of a set of technological operations for the preparation of coniferous seed material for reforestation. Forestry Engineering Journal. 2021; 11 (4): 150-160. DOI: https://doi.org/10.34220/issn.2222-7962/2021.4/13.
6. Novikova T. P. The choice of a set of operations for forest landscape restoration technology. Inventions. 2022; 7 (1): 1. DOI: https://doi.org/10.3390/inventions7010001.
7. Novikova T. P. Assessment of the forest seed material quality at the Scots pine (Pinus sylvestris L.) experimental site during adaptive restoration of forest landscapes. Forestry Engineering Journal. 2023; 13 (1): 112-128. DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/8.
8. Novikova T. P. et al. FLR-Library reference information system for adaptive forest restoration: cluster analysis of descriptors. Forestry Engineering Journal. 2023; 13 (3): 164-179. DOI: https://doi.org/10.34220/issn.2222-7962/2023.3/12.
9. Novikova T. P. et al. FLR-Library reference information system for adaptive forest restoration: the information model. Forestry Engineering Journal. 2023; 13 (4): 114-124. DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/7.
10. Yazici N. et al. Gene diversity in seed crop of Taurus cedar (Cedrus libani A. Rich.) over an altitudinal range. Geography. Environment. Sustainability. 2023; 4 (16): 63-71. DOI: https://doi.org/10.24057/2071-9388-2023-2922.
11. Marqués L., Camarero J. J., Zavala M.A. et al. Evaluating tree-to-tree competition during stand development in a relict Scots pine forest: How much does climate matter? Trees. 2021; 35: 1207-1219. DOI: https://doi.org/10.1007/s00468-021-02109-8.
12. Wood K. E. A., Kobe R. K., Ibáñez I., McCarthy-Neumann S. Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLOS ONE. 2023; 18 (11): e0293906. DOI: https://doi.org/10.1371/journal.pone.0293906.
13. Kohyama T. S., Kohyama T. I., Sheil D. Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. Forest Ecology and Management. 2019; 433: 729-740. – DOI: https://doi.org/10.1016/j.foreco.2018.11.010.
14. Roitberg B., Li C., Lalonde R. Tree adaptive growth (TAG) model: a life-history theory-based analytical model for post-thinning forest stand dynamics / B. Roitberg, // Frontiers in Plant Science. 2024; 15: 1-14. DOI: https://doi.org/10.3389/fpls.2024.1344883.
15. Lisicyn, V.I. Modelirovanie dinamiki hoda rosta drevostoev na osnove termodinamicheskogo podhoda / V. I. Lisicyn, M. V. Drapalyuk, N. N. Matveev // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2022; 3 (387): 213-225. DOI: https://doi.org/10.37482/0536-1036-2022-3-213-225.
16. Lisitsyn V.I., Matveev N.N., Saushkin V.V. Ecological and physiological modelling of mixed stand dynamics // IOP Conf. Ser.: Earth Environ. Sci. 2021; 875: 012042. DOI: https://doi.org/10.1088/1755-1315/875/1/012042.
17. Lisitsyn, V.I.; Matveev, N.N. Entropy Production Using Ecological and Physiological Models of Stand Growth Dynamics as an Example. Forests 2022, 13: 1948. DOI: https://doi.org/10.3390/f13111948.
18. Nielsen S.; Müller F.; Marques, J.; Bastianoni, S.; Jørgensen, S. Thermodynamics in Ecology—An Introductory Review. Entropy. 2020; 22: 820. DOI: https://doi.org/10.3390/e22080820.
19. Harold E. Burkhart Modeling Forest Stand Dynamics, Growth and Yield Forests. 2021; 12: 1553. DOI: https://doi.org/10.3390/f12111553.
20. Dubenok, N. N. Model' obrazuyuschey drevesnogo stvola sosny obyknovennoy (Pinus sylvestris L.), proizrastayuschey v Kostromskoy oblasti / N. N. Dubenok, A. V. Lebedev, V. V. Gostev // Lesotehnicheskiy zhurnal. 2023; 13 (4.1): 5-22. DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/3.
21. Stankova T.V. A dynamic whole-stand growth model, derived from allometric relation-ships. Silva Fennica. 2016; 50 (1): 1406. DOI: https://doi.org/10.14214/sf.1406.
22. Modeling of growth and development of spruce stands in the West Siberian South taiga plain forest region P V Mikhaylov, S L Shevelev, S M Sul’tson, S V Verkhovets and A A Goroshko. IOP Conf. Series: Earth and Environmental Science 677 (2021) 052118 IOP Publishing doihttps://doi.org/10.1088/1755-1315/677/5/052118
23. Matveeva R N, Bratilova N P, Butorova O F, Kolosovsky E V and Svalova A I. Siberian cedar in subordinate crops. IOP Conf. Series: Earth and Environmental Science 2020; 548: 052018. DOI: https://doi.org/10.1088/1755-1315/548/5/052018.
24. Matveeva R.N. Izmenchivost' reproduktivnogo razvitiya polusibov plyusovyh derev'ev Pinus sibirica Du Tour / R. N. Matveeva, Yu. E. Scherba, N. A. Shenmayer // Lesotehnicheskiy zhurnal. 2023; 13 (49): 99-111. DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/7.
25. Levin S.V. Ekologo-biologicheskie osobennosti proizrastaniya kedra sibirskogo (Pinus sibirica du tour.) v usloviyah introdukcii voronezhskoy oblasti. Byulleten' Gosudarstvennogo Nikitskogo botanicheskogo sada. 2022; 144: 25-32. https://doi.org/10.36305/0513-1634-2022-144-25-32.
26. Primenenie ekologo-fiziologicheskogo modelirovaniya dlya opisaniya dinamiki rosta dubovyh drevostoev / V. I. Lisicyn, N. N. Matveev, N. S. Kamalova, N. Yu. Evsikova, S. V. Vnukova // Lesa Rossii: politika, promyshlennost', nauka, obrazovanie : materialy VIII Vserossiyskoy nauchno-tehnicheskoy konferencii, 24-26 maya 2023 g. – Sankt-Peterburg, 2023. - S. 283-286.
27. Modelirovanie dinamiki rosta kedra sibirskogo (Pinus sibirica Du Tour).V. I. Lisicyn, N. N. Matveev, N. S. Kamalova, N. Yu. Evsikova // Fizicheskie osnovy sovremennyh naukoemkih tehnologiy. Materialy Mezhdunarodnogo nauchno-metodicheskogo seminara. Voronezh, 2023, 31-38 DOI: https://doi.org/10.58168/PBMT_31-38.
28. Lisicyn, V. I. Opredelenie vozrasta biologicheskoy zrelosti v ekologo-fiziologicheskoy modeli dinamiki drevostoya / V. I. Lisicyn, T. P. Novikova // Lesa Rossii: politika, promyshlennost', nauka, obrazovanie. SPb, 2023. S. 286-288.
29. Lisicyn V.I., Novikova T.P., Novikov A.I. Modelirovanie vozrasta biologicheskoy zrelosti sosnovyh i dubovyh drevostoev // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2023. Vyp. 246. S. 6–21. DOI: https://doi.org/10.21266/2079-4304.2023.246.6-21.
30. Tablicy i modeli hoda rosta i produktivnosti nasazhdeniy osnovnyh esoobrazuyuschih porod Severnoy Evrazii : normativno-spravochnye materialy / A. Z. Shvidenko, D. G. Schepaschenko, S. Nil'son, Yu. I. Buluy. – 2-e izd., dop. M., 2008: 886. Rezhim dostupa: https://www.elibrary.ru/fqdwdk.
31. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2020662105 RF. Programma rascheta dinamiki rosta drevostoev po ekologo-fiziologicheskoy modeli, osnovannoy na termodinamicheskom podhode : № 2020661370 : zayavl. 01.10.2020 : opubl. 08.10.2020; zayavitel' VGTU. Rezhim dostupa: https://www.elibrary.ru/xwgolw.
32. Korzuhin M.D. Postroenie krivyh hoda rosta drevostoev na osnove obobschennoy modeli Bertalanfi po dannym gosudarstvennogo lesnogo reestra // Lesovedenie. 2019; 2: 105-114. DOI: https://doi.org/10.1134/S0024114819020049.
33. Jorgensen, S.E. Thermodynamics and ecological modelling. Boca Raton, CRC Press, 2018: 384. DOI: https://doi.org/10.1201/9781482278613.
34. Ivetić, V. The role of forest reproductive material quality in forest restoration / V. Ivetić et al. // Forestry Engineering Journal. 2019; 9 (2): 56-65. DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.
35. Detection of Scots pine single seed in optoelectronic system of mobile grader: mathematical modeling / M. Tigabu et al. // Forests. 2021; 12 (2): 240. DOI: https://doi.org/10.3390/f12020240.