FGBUN «Botanicheskiy sad Ural'skogo otdeleniya Rossiyskoy akademii nauk» (BS UrO RAN) (Glavnyy nauchnyy sotrudnik)
Russian Federation
graduate student from 01.01.2023 until now
Revda, Russian Federation
Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
The basic density (BD) of wood, as the ratio of dry mass to its volume, is widely used to assess the quality of wood in various fields of application. In the literature, the BD of wood and bark are analyzed separately, however, in modern taxation standards, stem volumes are given together with bark. If it is necessary to calculate the biomass of stems above bark according to the available volume data, then it is impossible to obtain the desired result with sufficient accuracy, since the ratio of wood and bark is unknown. Currently, there are no studies of BD stems above bark for various tree species of Eurasia. The purpose of this work was to analyze the regional characteristics of the BD of stems above bark of deciduous tree species of Eurasia. Based on the materials of the author's database on the forest biomass, a sample of 2,340 sample plots with taxation characteristics of 6 deciduous tree genera as aggregates of species within Eurasia as well as 2 single species was formed. Models for estimating the BD of stems above bark are calculated, including numerical independent variables in the form of age and density of the stand and a block of dunny variables encoding the regional affiliation of the source data within the genus (species). For the average values of age and density, the ranking of genera and species by BD value is performed. Since there are no initial data for many regions, the ranking of Eurasian species by average BD indicators is performed. The ranking series begins with Fagus sylvatica L. and Quercus rubra L. (652 and 641 kg/m3) and ends with Populus trichocarpa Torr. & A.Gray ex Hook. and Populus davidiana (Dode) Hultén (329 and 299 kg/m3). The obtained models and ranking of species by the value of the BD of stems above bark can be used to calculate the carbon pool in deciduous stands of Eurasia according to forest inventory data.
basic density of wood above bark, harmonization of basic density, 27 deciduous species of Eurasia, mixed type model
1. Melehov V. I. Kachestvo drevesiny sosny v kul'turah / V. I. Melehov, N. A. Babich, S. A. Korchagov // Arhangel'sk : Izd-vo AGTU, 2003. – 110 s. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=21534714.
2. Problemy ocenki bioproduktivnosti lesov v aspekte biogeografii: 2. Modeli smeshannyh effektov / V. A. Usol'cev, S. O. R. Shubairi, Dzh. A. Dar [i dr.] // Eko-potencial. – 2018. – № 1 (21). – S. 9–26. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=32819636.
3. Usol'cev V. A. Biomassa i pervichnaya produkciya lesov Evrazii : monografiya : elektronnaya baza dannyh / V. A. Usol'cev. – 4-e izd., dop. – Ekaterinburg : Botanicheskiy sad UrO RAN, UGLTUral'skiy gosudarstvennyy lesotehnicheskiy universitet, 2023. Rezhim dostupa: https://elibrary.ru/ozgnkk.
4. Usol'cev V. A. Geograficheskie zakonomernosti izmeneniya bazisnoy plotnosti drevesiny i kory lesoobrazuyuschih porod Evrazii / V. A. Usol'cev, I. S. Cepordey // Sibirskiy lesnoy zhurnal. – 2022. – № 3. – S. 59–68. – DOI: http://doi.org/10.15372/SJFS20220307.
5. Usol'cev V. A. Modelirovanie struktury i dinamiki fitomassy drevostoev / V. A. Usol'cev. – Krasnoyarsk : Izd-vo Krasnoyarskogo un-ta, 1985. – 192 s. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=22825234.
6. Usol'cev V. A. Plotnost' drevesiny i kory derev'ev na klimaticheskih gradientah Evrazii / V. A. Usol'cev, I. S. Cepordey // Lesovedenie. – 2023. – № 3. – S. 217-227. DOI: http://doi.org/10.31857/S0024114823030117.
7. Hoh A. N. Analiz anomaliy struktury i razmera godichnyh kolec v sosnyakah mshistyh i bagul'nikovyh / A. N. Hoh // Lesotehnicheskiy zhurnal. – 2023. – T. 13. – № 4 (52). – Ch. 2. – S. 212–230. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/24.
8. Cepordey I. S. Biologicheskaya produktivnost' lesoobrazuyuschih vidov v klimaticheskom kontekste Evrazii : monografiya / I. S. Cepordey ; Ministerstvo nauki i vysshego obrazovaniya Rossiyskoy Federacii, Botanicheskiy sad Ural'skogo otdeleniya Rossiyskoy akademii nauk. – Ekaterinburg, 2023. – 467 s. – ISBN 978-5-8295-0860-9. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=54303060.
9. Cepordey I. S. O problematike kvalimetricheskih issledovaniy biomassy lesov Evrazii / I. S. Cepordey, V. A. Usol'cev // Lesa Rossii i hozyaystvo v nih. – 2021. – № 3 (78). – S. 15-24. – DOI: https://doi.org/10.51318/FRET.2021.30.50.002.
10. Aboveground biomass basic density of hardwoods tree species / R. Petráš, J. Mecko, D. Krupová, A. Pažitný // Wood Research. – 2020. – Vol. 65. – No. 6. – 1001-1012 pp. – DOI: http://doi.org/10.37763/wr.1336-4561/65.6.10011012.
11. Anatomical and physico-mechanical properties of Acacia auriculiformis wood in relation to age and soil in Benin, West Africa / M. Tonouéwa, P. Langbour, S. S. H. Biaou [et al.] // European Journal of Wood and Wood Products. – 2020. – Vol. 78. – No. 4. – 745–756 pp. – DOI: http://doi.org/10.1007/s00107-020-01540-x.
12. Assessing intra-annual growth dynamics in climatically contrasting years, sites, and tree species using dendrometers and wood anatomical data / A. Debel, Z . Foroozan, M. Häusser [et al.] // Frontiers in Forests and Global Change. – 2024. – No. 7. – Art. 1342413. – DOI: http://doi.org/10.3389/ffgc.2024.1342413.
13. Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics / M. Balasso, M. Hunt, A. Jacobs, J. O’Reilly-Waps // Forest Ecology and Management. – 2021. – No. 491. – 1–14 pp. – DOI: http://doi.org/10.1016/j.foreco.2021.118992.
14. Consequences of Vertical Basic Wood Density Variation on the Estimation of Aboveground Biomass with Terrestrial Laser Scanning / M. Demol, K. Calders, S. Moorthy [et al.] // Trees - Structure and Function. – 2021. – No. 35. – 671–684 pp. – DOI: http://doi.org/10.1007/s00468-020-02067-7.
15. Drought responsiveness in two Mexican conifer species forming young stands at high elevations / E. D. Vivar-Vivar, M. Pompa-García, D. A. Rodríguez-Trejo [et al.] // Forest Systems. – 2021. – Vol. 30. – No. 3. – Art. e012. – DOI: http://doi.org/10.5424/fs/2021303-18371.
16. Effect of stem rot on wood basic density, carbon, and nitrogen content of living deciduous trees in hemiboreal forests / J. Liepiņš, I. Jaunslaviete, K. Liepiņš [et al.] // Silva Fennica. – 2023. – Vol. 57. – No. 3. – Art. 23040. – DOI: http://doi.org/10.14214/sf.23040.
17. Estimation of total extractive content of wood from planted and native forests by near infrared spectroscopy / L. T. Mancini, F. M. G. Ramalho, P. F. Trugilho, P. R. G. Hein // iForest – Biogeosciences and Forestry. – 2021. – Vol. 14. – No. 1. – 18–25 pp. – DOI: http://doi.org/10.3832/ifor3472-013.
18. Evaluating basic density calibrations based on NIR spectra recorded on the three wood faces and subject to different mathematical treatments / E. A. Amaral, L. M. Dos Santos, P. R. G. Hein [et al.] // New Zealand Journal of Forestry Science. – 2021. – Vol. 51. – No. 2. – 1–7 pp. – DOI: http://doi.org/10.33494/nzjfs512021x100x.
19. Genetic influence on components of wood density variation in white spruce / A. Soro, P. Lenz, M. Hassegawa [et al.] // Forestry. – 2022. – No. 95. – 153–216 pp. – DOI: http://doi.org/10.1093/forestry/cpab044.
20. Growth-ring boundaries of tropical tree species: Aiding delimitation by long histological sections and wood density profiles / M. T. Quintilhan, L. C. Santini, D. R. O. Rodriguez [et al.] // Dendrochronologia. – 2021. – Vol. 69. – 1–10 pp. – DOI: http://doi.org/10.1016/j.dendro.2021.125878.
21. Improper data practices erode the quality of global ecological databases and impede the progress of ecological research / S. P. Augustine, I. Bailey-Marren, K. T. Charton [et al.] // Global Change Biology. – 2024. – No. 30. – Art. e17116. – DOI: http://doi.org/10.1111/gcb.17116.
22. Improving aboveground biomass estimates by taking into account density variations between tree components / A. Billard, R. Bauer, F. Mothe [et al.] // Annals of Forest Science. – 2020. – No. 77. – Art. 103. – DOI: http://doi.org/10.1007/s13595-020-00999-1.
23. Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species / S. M. G. Rocha, G. B. Vidaurre, J. E. M. Pezzopane [et al.] // Forest Ecology and Management. – 2020. – Vol. 473. – No. 6. – Art. 118290. – DOI: http://doi.org/10.1016/j.foreco.2020.118290.
24. MacFarlane D. W. Functional Relationships Between Branch and Stem Wood Density for Temperate Tree Species in North America / D. W. MacFarlane // Frontiers in Forests and Global Change. – 2020. – Vol. 3. – No. 63. – DOI: http://doi.org/10.3389/ffgc.2020.00063.
25. Marden M. Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand / M. Marden, S. Lambie, L. Burrows // New Zealand Journal of Forestry Science. – 2021. – Vol. 51. – Art. 1. – DOI: http://doi.org/10.33494/nzjfs512021x121x.
26. Measuring the tensile strain of wood by visible and near-infrared spatially resolved spectroscopy / T. Ma, T. Inagaki, M. Yoshida [et al.] // Cellulose. – 2021. – Vol. 28. – No. 17. – 10787-10801 pp. – DOI: http://doi.org/10.1007/s10570-021-04239-1.
27. Modeling of radial growth curves and radial variation of basic density in Chamaecyparis obtusa planted in two progeny test sites / Y. Takahashi, F. Ishiguri, M. Matsushita [et al.] // Journal of Wood Science. – 2024. – Vol. 70. – No. 2. – DOI: http://doi.org/10.1186/s10086-023-02116-y.
28. Nygård R. Stem basic density and bark proportion of 45 woody species in young savanna coppice forests in Burkina Faso / R. Nygård, B. Elfving // Annals of Forest Science. – 2000. – No. 57. – 143–153 pp. – DOI: http://doi.org/10.1051/forest:2000165.
29. Prediction of the basic density of tropical woods by near-infrared spectroscopy / D. T. Medeiros, R. R. Melo, P. H. G. Cademartori [et al.] // Cerne. – 2023. – Vol. 29. – Art. e-103262. – DOI: http://doi.org/10.1590/01047760202329013262.
30. Radial variation of wood density and fiber morphology of two commercial species in a tropical humid forest in southeastern Peru / L. A. P. Cahuana, E. A. G. Piña, G. P. Tuesta, M. Tomazello-Filho // Cerne. – 2023. – No. 29. – Art. e-103143. – DOI: http://doi.org/10.1590/01047760202329013143.
31. Radial variations of broad-sense heritability in wood properties and classification of load-deflection curves in static bending for six half-sib families of Chamaecyparis obtuse / Y. Takahashi, F. Ishiguri, I. Nezu [et al.] // Journal of Wood Science. – 2022. – No. 68. – Art. 24. – DOI: http://doi.org/10.1186/s10086-022-02030-9.
32. Rates of Stemwood Carbon Accumulation Are Linked to Hydroclimate Variability in Mexican Conifers / M. Pompa-García, E. D. Vivar-Vivar, E. A. Rubio-Camacho, J. J. Camarero // Forests. – 2023. – No. 14. – Art. 1381. – DOI: http://doi.org/10.3390/f14071381.
33. Sample preparation protocol for wood and phloem formation analyses / P. Prislan, E. M. Del Castillo, G. Skoberne [et al.] // Dendrochronologia. – 2022. – No. 73. – Art. 125959. – DOI: http://doi.org/10.1016/j.dendro.2022.125959.
34. Similar importance of inter-tree and intra-tree variations in wood density observations in Central Europe / H. Yang, K. Stereńczak, Z. Karaszewski, N. Carvalhais // Biogeosciences. – 2024. – DOI: http://doi.org/10.5194/egusphere-2023-2691.
35. The effects of contrasting environments on the basic density and mean annual increment of wood from eucalyptus clones / S. E. L. Costa, R. C. do Santos, G. B. Vidaurre [et al.] // Forest Ecology and Management. – 2020. – No. 458. – Art. 117807. – DOI: http://doi.org/10.1016/j.foreco.2019.117807.
36. Variation in the Basic Density of the Tree Components of Gray Alder and Common Alder / K. Liepinš, J. Liepinš, J. Ivanovs [et al.] // Forests. – 2023. – No. 14. – Art. 135. – DOI: http://doi.org/10.3390/f14010135.
37. Variation of basic density, calorific value and volumetric shrinkage within tree height and tree age of Ugandan grown Eucalyptus grandis wood / O. E. Sseremba, P. Mugabi, A. Y. Banana [et al.] // Journal of Forestry Research. – 2020. – No. 32. – 503–512 pp. – DOI: http://doi.org/10.1007/s11676-020-01141-7.
38. Variations in heartwood formation and wood density as a function of age and plant spacing in a fast-growing eucalyptus plantation / L. M. H. Santos, M. N. F. Almeida, J. G. M. Silva [et al.] // Holzforschung. – 2021. – No. 75. – 979–988 pp. – DOI: http://doi.org/10.1515/hf-2020-0215.
39. Wood Basic Density Assessment of Eucalyptus Genotypes Growing under Contrasting Water Availability Conditions / J. P. Elissetche, R. M. Alzamora, Y. Espinoza [et al.] // Forests. – 2024. – No. 15. – Art. 185. – DOI: http://doi.org/10.3390/f15010185.
40. Wood density variations of E. urophylla clone among growth sites are related to climate / M. N. F. Almeida, G. B. Vidaurre, J. L. Louzada [et al.] // Canadian Journal of Forest Research. – 2023. – No. 53. – 343–353 pp. – DOI: http://doi.org/10.1139/cjfr-2022-0037.