Simulation modeling of the operation of regenerative electromagnetic shock absorbers installed in the suspension of a timber road train
Abstract and keywords
Abstract (English):
This article solves the problem of increasing the energy efficiency of the process of removing timber by logging road trains. Operating experience shows that more than 10 % of the fuel energy is consumed by a timber road train on friction processes in the suspensions of its links. The relevance of the feasibility of transformation, accumulation and beneficial use of energy dissipated in the suspension of a road train is substantiated. The potential of modern developments by Russian and foreign scientists in the field of converting vibration energy into electrical energy using suspension shock absorbers of various designs is quite significant. When designing regenerative electromagnetic shock absorbers, problematic issues still arise related to their limited generated power. In order to increase the productivity of electrical energy generation, a promising design of a regenerative electromagnetic shock absorber based on permanent magnets has been proposed. The study was carried out based on mathematical and simulation modeling methods. When the height of unevenness changes from 0.1 to 0.9 m, the recovered electrical power increases from 0.34 to 10.5 kW. When a logging road train moves at a speed of 20 km/h over uneven supporting surfaces of low height – 0 ... 0.2 m, regenerative shock absorbers generate limited power not exceeding 1.35 kW. With a height of unevenness of the supporting surface of 0.4 ... 0.6 m, regenerative shock absorbers generate power in the range from 4.2 to 6.8 kW. When the speed of the road train increases from 10 to 30 km/h, the recovered electrical power increases from 1.17 to 7.94 kW. The use of the results obtained will allow designers to refine similar designs of regenerative electromagnetic shock absorbers at the design stage.

Keywords:
logging truck, regenerative electromagnetic shock absorber, logging road surface, numerical integration, magnetic induction, recovered electrical power, computer program, ring magnets, productivity
Text
Publication text (PDF): Read Download
References

1. Posmet'ev, V. I. Ocenka aktual'nosti ispol'zovaniya rekuperativnoy podveski s lineynym elektromagnitnym generatorom v konstrukcii lesovoznogoavtomobilya / V. I. Posmet'ev, V. O. Nikonov, V. A. Zelikov // Voronezhskiy nauchno-tehnicheskiy vestnik. – 2022. – T. 2, № 2 (40). – S. 50-63. – Bibliogr. : s. 60-61 (27 nazv.). – DOI: https://doi.org/10.34220/2311-8873-2022-50-63

2. Optimizaciya konstruktivnyh parametrov rekuperativnogo scepnogo ustroystva, ustanovlennogo v lesovoznom avtomobile s pricepom / V. O. Nikonov, V. I. Posmet'ev, V. A. Zelikov, V. V. Posmet'ev, A. S. Chuykov // Lesotehnicheskiy zhurnal. – 2023. – T. 13, № 1(49). – S. 162-179. – Bibliogr. : s. 176-177 (20 nazv.). – DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/11

3. Posmet'ev, V. I. Obosnovanie celesoobraznosti osnascheniya lesovoznyh avtopoezdov rekuperativnymi tyagovo-scepnymi ustroystvami po rezul'tatam imitacionnogo modelirovaniya : monografiya / V. I. Posmet'ev, V. O. Nikonov, V. V. Posmet'ev ; M-vo nauki i vysshego obrazovaniya RF, FGBOU VO «VGLTU». – Voronezh, 2023. – 204 s. – Bibliogr. : s. 185-203 (141 nazv.). URL : https://www.elibrary.ru/item.asp?id=61082376.

4. Optimizaciya konstruktivnyh parametrov pnevmogidravlicheskogo sedel'no-scepnogo ustroystva lesovoznogo avtopoezda / V. I. Posmet'ev, V. O. Nikonov, A. Yu. Manukovskiy, V. V. Posmet'ev, A. V. Avdyuhin // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. – 2023. – № 3(393). – S. 126-139. – Bibliogr. : s. 137-139 (20 nazv.). – DOI: https://doi.org/10.37482/0536-1036-2023-3-126-139.

5. Borisov, V. A. Nekotorye voprosy prochnosti scepki tyagacha i polupricepa-rospuska lesovoznogo avtopoezda / V. A. Borisov, D. V. Akinin, V. V. Nikitin // Resources and Technology. – 2019. – T. 16, № 3. – S. 12-23. – Bibliogr. : s. 21-22 (21 nazv.). – DOI: https://doi.org/10.15393/j2.art.2019.4702.

6. Verifikaciya eksperimentami modeley skorosti dvizheniya lesovozov v zavisimosti ot prirodno-proizvodstvennyh faktorov / A. P. Mohirev, K. P. Rukomoynikov, P. M. Mazurkin, N. A. Bragina // Lesnoy vestnik. Forestry Bulletin. – 2021. – T. 25, № 2. – S. 108-115. – Bibliogr. : s. 113 (21 nazv.). – DOI: https://doi.org/10.18698/2542-1468-2021-2-108-115.

7. Mazurkin, P. M. Reytingi grupp faktorov vyvozki sortimentov / P. M. Mazurkin, A. P. Mohirev, K. P. Rukomoynikov // Resources and Technology. – 2021. – T. 18, № 3. – S. 37-52. – Bibliogr. : s. 50-51 (12 nazv.). – DOI: https://doi.org/10.15393/j2.art.2021.5803.

8. Mohirev, A. P. Zakonomernosti rangovyh raspredeleniy faktorov vyvozki drevesiny s lesnyh uchastkov / A. P. Mohirev, K. P. Rukomoynikov, P. M. Mazurkin // Lesnoy vestnik / Forestry Bulletin, – 2021. – T. 25. № 4. S. 112-120. – Bibliogr. : s. 117-118 (20 nazv.). – DOI: https://doi.org/10.18698/2542-1468-2021-4-112-120.

9. Fractional Order PID Control Based on Ball Screw Energy Regenerative Active Suspension / Zhang J., Liu J., Liu B., Li M. // Actuators. 2022, 11(7), 189. – Bibliogr. : pp. 22-23 (31 titles). – DOI: https://doi.org/10.3390/act11070189 (SNIP 0,975).

10. Damping Performance Analysis of Magnetorheological Damper Based on Multiphysics Coupling / Hu G., Wu L., Deng Y., Yu L., Luo B. // Actuators, 2021; 10(8), 176. – Bibliogr. : pp. 22-23 (30 titles). – DOI: https://doi.org/10.3390/act10080176 (SNIP 0,975)

11. Song H. Research on Inertial Force Attenuation Structure and Semi-Active Control of Regenerative Suspension / Song H., Dong M., Wang X. // Applied Sciences, 2024, 14(6), 2314. – Bibliogr. : pp. 19-20 (31 titles). – DOI: https://doi.org/10.3390/app14062314 (SNIP 0,573).

12. Jia Y. An Analytical and Numerical Study of Magnetic Spring Suspension with Energy Recovery Capabilities / Jia Y., Li S., Shi Y. // Energies, 2018, 11(11), 3126. – Bibliogr. : pp. 14-15 (35 titles). – DOI: https://doi.org/10.3390/en11113126 (SNIP 1,025).

13. Duong M.-T. Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure / Duong M.-T., Chun Y.-D., Hong D.-K. // Energies, 2018, 11(12), 3352. – Bibliogr. : pp. 11-12 (25 titles). – DOI: https://doi.org/10.3390/en11123352 (SNIP 1,025).

14. Bowen L. Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers / Bowen L., Vinolas J., Olazagoitia J. L. // Energies, 2019, 12(24), 4710. – Bibliogr. : pp. 17-19 (42 titles). – DOI: https://doi.org/10.3390/en12244710 (SNIP 1,025).

15. An Energy-Harvesting System Using MPPT at Shock Absorber for Electric Vehicles / Lee J., Chun Y., Kim J., Park B. // Energies, 2021, 14(9), 2552. – Bibliogr. : pp. 12-14 (31 titles). – DOI: https://doi.org/10.3390/en14092552 (SNIP 1,025).

16. Alhumaid S. A Noncontact Magneto-Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study / Alhumaid S., Hess D., Guldiken R. // Energies, 2022, 15(12), 4476. – Bibliogr. : pp. 15-17 (46 titles). – DOI: https://doi.org/10.3390/en15124476 (SNIP 1,025).

17. Jamolov U. Multiphysics Design of an Automotive Regenerative Eddy Current Damper / Jamolov U., Peccini F., Maizza G. // Energies, 2022, 15(14), 5044. – Bibliogr. : pp. 17-18 (37 titles). – DOI: https://doi.org/10.3390/en15145044 (SNIP 1,025).

18. Can a Semi-Active Energy Harvesting Shock Absorber Mimic a Given Vehicle Passive Suspension? / Reyes-Avendaño J. A., Moreno-Ramírez C., Gijón-Rivera C., Gonzalez-Hernandez H. G., Olazagoitia J. L. // Sensors. 2021, 21(13), 4378. – Bibliogr. : pp. 16-17 (34 titles). – DOI: https://doi.org/10.3390/s21134378 (SNIP 1,317).

19. Huang J. Analysis and Research on the Comprehensive Performance of Vehicle Magnetorheological Regenerative Suspension / Huang J., Wang E., Zhang H. // Vehicles, 2020, 2(4), 576-588. – Bibliogr. : pp. 587-588 (14 titles). – DOI: https://doi.org/10.3390/vehicles2040033 (SNIP 0,955).

20. Casavola A. Optimal Control Strategies for Energy Harvesting by Regenerative Shock Absorbers in Cars / Casavola A., Tedesco F., Vaglica P. // Vibration, 2020, 3(2), 99-115. – Bibliogr. : pp. 115 (15 titles). – DOI: https://doi.org/10.3390/vibration3020009 (SNIP 1,95).

21. Zhang R. Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems / Zhang R., Wang X., John S. // Energies, 2018, 11(5), 1167. – Bibliogr. : pp. 37-43 (145 titles). – DOI: https://doi.org/10.3390/en11051167 (SNIP 1,025).

22. Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles / Hu X., Sun J., Chen Y., Liu Q., Gu L. // Energies, 2019, 12(13), 2594. – Bibliogr. : pp. 18-19 (37 titles). – DOI: https://doi.org/10.3390/en12132594 (SNIP 1,025).

23. Nonlinear Modeling and Coordinate Optimization of a Semi-Active Energy Regenerative Suspension with an Electro-Hydraulic Actuator / Kou F., Du J., Wang Z., Li D., Xu J. // Algorithms, 2018, 11(2), 12. – Bibliogr. : pp. 16-17 (24 titles). – DOI: https://doi.org/10.3390/a11020012 (SNIP 0,913).

24. Posmet'ev, V. I. Analiz konstrukciy elektromagnitnyh amortizatorov, rekuperiruyuschih energiyu v podveskah avtomobiley / V. I. Posmet'ev, V. O. Nikonov, A. S. Sinicyn // Problemy ekspluatacii i perspektivy razvitiya avtomobil'nogo transporta : Materialy Vserossiyskoy nauchno-tehnicheskoy konferencii, Voronezh, 05-06 oktyabrya 2023 goda / otv. redaktor V.O. Nikonov. – Voronezh, 2023. – S. 31-44. – Bibliogr. : s. 41-44 (30 nazv.). – DOI: https://doi.org/10.58168/OPPRTD_31-44. – URL: https://www.elibrary.ru/item.asp?id=54789870.

25. Patent № 2799872 Rossiyskaya Federaciya, MPK F16F 15/03, B60G 13/14, H02K 41/02. Rekuperativnyy amortizator na osnove lineynogo elektrodvigatelya s postoyannymi magnitami : № 2023105791 : zayavl. 13.03.2023 : opubl. 13.07.2023 / D. V. Mironov, R. N. Hamitov, V. I. Posmet'ev, V. O. Nikonov, A. P. Progovorov, I. V. Materi, S. V. Roslov, A. S. Mironchik ; zayavitel' Mironov D. V., Progovorov A. P. URL: https://www.elibrary.ru/item.asp?id=54203825.


Login or Create
* Forgot password?