APPLICATION OF NEURAL NETWORK MODELING TO ANALYZE THE EFFECTIVENESS OF BUSINESS DECISION MAKING
Abstract and keywords
Abstract (English):
This paper examines the use of neural network modeling in various aspects of business, such as customer behavior analysis, supply chain optimization, financial analysis and personnel management. The emphasis is on the ability of neural networks to analyze and predict based on large amounts of data, thereby improving business decision making. Challenges associated with the implementation of neural networks are also discussed, including requirements for data quality and interpretability of results. Inspired by the structure and function of the human brain, neural network modeling is a powerful tool for analyzing and predicting large data sets. The relevance of this work is due to the fact that decision-making in modern business requires taking into account many factors and variables, where neural networks make it possible to identify trends and patterns, thereby providing more accurate forecasts.

Keywords:
Neural network, modeling, financial analysis, personnel management, forecasting, data array, neural network modeling
References

1. Gluhov, V. I. Iskusstvennyy intellekt, osnovannyy na rekurrentnoy neyronnoy seti, v sfere HR / V. I. Gluhov, N. A. Zaletin, E. V. Subbotin // Vserossiyskaya konferenciya molodyh issledovateley s mezhdunarodnym uchastiem «Social'no-gumanitarnye problemy obrazovaniya i professional'noy samorealizacii» (Social'nyy inzhener-2020) : sbornik materialov Vserossiyskoy konferencii molodyh issledovateley s mezhdunarodnym uchastiem, Moskva, 07–10 dekabrya 2020 goda. Tom Chast' 4. – Moskva: Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Rossiyskiy gosudarstvennyy universitet imeni A.N. Kosygina (Tehnologii. Dizayn. Iskusstvo)", 2020. – S. 172-175. – EDN TEGCBK.

2. Demin, K. D. Analiz primeneniya glubokogo obucheniya dlya sovremennyh logisticheskih sistem i cepey postavok / K. D. Demin, A. D. Shishkova // Sistemnyy analiz i logistika. – 2023. – № 3(37). – S. 169-175. – DOIhttps://doi.org/10.31799/2077-5687-2023-3-169-175. – EDN PAMGLI.

3. Ivanov, I. O. Razrabotka i issledovanie sistemy ocenki finansovoy sostoyatel'nosti predpriyatiya svyazi na osnove primeneniya diskriminantnogo analiza i neyrosetevyh tehnologiy / I. O. Ivanov // TEORIYa i PRAKTIKA SOVREMENNOY nauki : sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferencii : v 2 ch., Penza, 17 iyunya 2020 goda. Tom Chast' 1. – Penza: "Nauka i Prosveschenie" (IP Gulyaev G.Yu.), 2020. – S. 39-44. – EDN MANQRT.

4. Klyueva, E. G. Primenenie metodov mashinnogo obucheniya dlya analiza pokazateley na finansovyh rynkah / E. G. Klyueva, I. V. Solodovnikova, N. A. Kotlyarov // Trudy universiteta. – 2024. – № 1(94). – S. 511-518. – DOIhttps://doi.org/10.52209/1609-1825_2024_1_511. – EDN POVTGV.

5. Labusov, M. V. Analiz kratkosrochnyh finansovyh vremennyh ryadov s pomosch'yu neyronnyh setey dolgoy kratkosrochnoy pamyati / M. V. Labusov // Ekonomika i upravlenie: problemy, resheniya. – 2021. – T. 3, № 4(112). – S. 165-178. – DOIhttps://doi.org/10.36871/ek.up.p.r.2021.04.03.023. – EDN JJMMJL.

6. Mitina, O. A. Primenenie grafovyh neyronnyh setey v sessionnyh rekomendatel'nyh sistemah / O. A. Mitina, D. M. Masyakin // Nacional'naya Associaciya Uchenyh. – 2023. – № 89-3. – S. 47-54. URL: https://elibrary.ru/item.asp?id=54802524 (data obrascheniya 23.07.2024).

7. Pron'kin K.A. NEYRONNYE SETI // Mirovaya nauka. 2020. №5 (38). S. 482-484. URL: https://cyberleninka.ru/article/n/neyronnye-seti-2 (data obrascheniya: 23.07.2024).

8. Skripnikova, S. A. Naym sotrudnikov s ispol'zovaniem neyroseti kadrovogo podbora / S. A. Skripnikova, A. V. Grigor'evyh // Informacionnye tehnologii v upravlenii i ekonomike. – 2022. – № 1(26). – S. 32-48. – EDN VMZOJD.

9. Slepcova, Yu. A. Riski upravlencheskih resheniy, podgotovlennyh s pomosch'yu iskusstvennyh neyronnyh setey / Yu. A. Slepcova, Ya. V. Shokin // Ekonomicheskaya bezopasnost' i marketingovoe upravlenie social'no-ekonomicheskimi sistemami : materialy Vserossiyskoy nauchno-prakticheskoy konferencii, Kostroma, 20–21 oktyabrya 2020 goda. – Kostroma: Kostromskoy gosudarstvennyy universitet, 2020. – S. 232-239. – EDN VYKXYJ.

10. Hrischatyy A.S. Issledovanie ispol'zovaniya neyrosetey dlya analiza dannyh i prinyatiya biznes-resheniy: analiz effektivnosti ispol'zovaniya neyrosetey dlya obrabotki bol'shih ob'emov dannyh i predostavleniya cennyh insaytov dlya prinyatiya resheniy // Innovacii i investicii. 2023. №7. S. 294-298. URL: https://cyberleninka.ru/article/n/issledovanie-ispolzovaniya-neyrosetey-dlya-analiza-dannyh-i-prinyatiya-biznes-resheniy-analiz-effektivnosti-ispolzovaniya (data obrascheniya: 23.07.2024).

11. Development of an automation system and intelligent neural network management of transport cargo flows using autonomous ships / M. V. Vasilescu, A. I. Epikhin, T. G. Toriia [et al.] // Ekspluataciya morskogo transporta. – 2023. – No. 1(106). – P. 114-122. URL: https://elibrary.ru/item.asp?id=54059126 (data obrascheniya 23.07.2024).


Login or Create
* Forgot password?