Moskva, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Scots pine is one of the main forest-forming species in the Kostroma region, therefore it is necessary to have tools that allow one to make informed decisions on managing the forest growing process, planning forest management, designing forest management activities and increasing the efficiency of forest stands performing environmental functions. The purpose of the study is to develop a dynamic model of growth and yield of pine stands in the Unzhensky Lowland (Kostroma region) based on repeated observations on permanent trial plots. The data for modeling the growth and yield of pine stands were materials from repeated censuses on 21 permanent trial plots of the Chernolukhovsky experimental forestry enterprise and 3 permanent trial plots of the Manturovo section of the Kologrivsky Forest Nature Reserve. To model growth by average height and average diameter, 15 dynamic equations based on 9 basic functions were analyzed, and to model thinning of forest stands, 14 dynamic equations were analyzed. The resulting regression equations for predicting the dynamics of average heights and diameters, thinning together form a model of growth and yield of pine forest stands, which belongs to the category of empirical models for predicting stand characteristics at the level of an individual forest stand, and its advantages are the invariance of the relative base age and the ability to give forecasts over a wide range of initial parameter values. The developed model can serve as an alternative to traditional tables of course of growth when designing and justifying forestry activities, when forests inventory using the updating method, as well as for making management decisions when managing pine forests. In combination with additional equations, it can be part of more complex models that allow predicting the structure of forest stands, commercial and carbon sequestration potential, and the impact of forestry activities.
Scots pine, Pinus sylvestris L., forest stand growth model, repeated observations, permanent trial plot
1. Dubenok N.N., Lebedev A.V., Chistyakov S.A. Dinamika osnovnyh pokazateley zemel' lesnogo fonda Kostromskoy obl. i biosfernogo rezervata «Kologrivskiy les». Lesohozyaystvennaya informaciya. 2023; 3: 26-36. DOI: https://doi.org/10.24419/LHI.2304-3083.2023.3.02.
2. Starcev A.I. Fitomassa chistyh i smeshannyh drevostoev sosny obyknovennoy v Nizhegorodskoy i Kostromskoy oblastyah. Lesovedenie. 2007; 2: 51-56. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=9490819.
3. Zamolodchikov D.G., Grabovskiy V.I., Kaganov V.V. Naturnaya i model'naya ocenki ugleroda valezha v lesah Kostromskoy oblasti. Lesovedenie. 2013; 4: 3-11. URL: https://www.elibrary.ru/item.asp?id=20260049.
4. Dubenok N.N., Lebedev A.V., Gostev V.V. Model' obrazuyuschey drevesnogo stvola sosny obyknovennoy (Pinus sylvestris L.), proizrastayuschey v Kostromskoy oblasti. Lesotehnicheskiy zhurnal. 2023; 4.1(52): 5-22. DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/3.
5. Ivanov A.M. Izuchenie morfologicheskoy izmenchivosti shishek sosny obyknovennoy (Pinus sylvestris L.) v Kostromskoy oblasti. Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoy vestnik. 2011; 4: 192-195. URL: https://www.elibrary.ru/item.asp?id=16540260.
6. Chudeckiy A.I., Shutov V.V., Ryzhova N.V. Opyt lesnoy rekul'tivacii vyrabotannogo peschanogo kar'era. Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoy vestnik. 2014; 18(4): 112-115. URL: https://www.elibrary.ru/item.asp?id=21838758.
7. Bagaev S.S. Lesokul'turnoe osvoenie osushennyh zemel' na territorii Kostromskoy niziny. Povyshenie effektivnosti lesnogo kompleksa: materialy Pyatoy Vserossiyskoy nacional'noy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem, Petrozavodsk, 22 maya 2019 goda. Petrozavodsk: Petrozavodskiy gosudarstvennyy universitet, 2019: 14-15. URL: https://www.elibrary.ru/item.asp?id=41170357.
8. Hlyustov V.K., Lebedev A.V. Tovarno-denezhnyy potencial drevostoev i optimizaciya lesopol'zovaniya. Irkutsk: Megaprint, 2017: 328. URL: https://www.elibrary.ru/item.asp?id=35192385.
9. Hlyustov V.K., Lebedev A.V., Efimov O.E. Ekobioenergeticheskiy potencial sosnyakov Kostromskoy oblasti. Moskva: Rossiyskiy gosudarstvennyy agrarnyy universitet – MSHA im. K.A. Timiryazeva, 2016: 292. URL: https://www.elibrary.ru/item.asp?id=28838067.
10. Dubenok N.N., Lebedev A.V., Chistyakov S.A. Hod rosta drevostoev v sosnovyh tipah lesa zapovednika "Kologrivskiy les". Lesohozyaystvennaya informaciya. 2023; 2: 43-54. DOI: https://doi.org/10.24419/LHI.2304-3083.2023.2.03.
11. Cieszewski C.J., Strub M. Generalized Algebraic Difference Approach Derivation of Dynamic Site Equations with Polymorphism and Variable Asymptotes from Exponential and Logarithmic Functions. Forest Science. 2008; 54(3): 303-315. DOI: https://doi.org/10.1093/forestscience/54.3.303.
12. Bailey R.L., Clutter J.L. Base-age invariant polymorphic site curves. Forest Science. 1974; 20(2): 155–159. DOI: https://doi.org/10.1093/forestscience/20.2.155.
13. Cieszewski C.J., Bailey R.L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science. 2000; 46(1): 116–126. DOI: https://doi.org/10.1093/forestscience/46.1.116.
14. Kazimirović M., Stajić B., Petrović N., Ljubičić J., Košanin O., Hanewinkel M., Sperlich D. Dynamic height growth models for highly productive pedunculate oak (Quercus robur L.) stands: explicit mapping of site index classification in Serbia. Annals of Forest Science. 2024; 81: 15. DOI: https://doi.org/10.1186/s13595-024-01231-0.
15. Kuehne C., McLean J.P., Maleki K., Antón-Fernández C., Astrup R. A stand-level growth and yield model for thinned and unthinned even-aged Scots pine forests in Norway. Silva Fennica. 2022; 56(1): 10627. DOI: https://doi.org/10.14214/sf.10627.
16. Maleki K., Astrup R., Kuehne C., McLean J.P., Antón-Fernández C. Stand-level growth models for long-term projections of the main species groups in Norway. Scandinavian Journal of Forest Research. 2022: 37(2): 130–143. DOI: https://doi.org/10.1080/02827581.2022.2056632.
17. Stankova T.V. A dynamic whole-stand growth model, derived from allometric relationships. Silva Fennica. 2015; 50(1): 1406. DOI: https://doi.org/10.14214/sf.1406.
18. Hipler S.-M., Spiecker H., Wu S. Dynamic Top Height Growth Models for Eight Native Tree Species in a Cool-Temperate Region in Northeast China. Forests. 2021; 12(8): 965. DOI: https://doi.org/10.3390/f12080965.
19. López-Álvarez Ó., Franco-Vázquez L., Marey-Perez M. Base-age invariant models for predicting individual tree accumulated annual resin yield using two tapping methods in maritime pine (Pinus pinaster Ait.) forests in north-western Spain. Forest Ecology and Management. 2023; 549: 121501. DOI: https://doi.org/10.1016/j.foreco.2023.121501.
20. Nunes L., Patrício M., Tomé J., Tomé M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Annals of Forest Science. 2011; 68: 311–323. DOI: https://doi.org/10.1007/s13595-011-0036-8.
21. Sharma R.P., Vacek Z., Vacek S., Jansa V., Kučera M. Modelling individual tree diameter growth for Norway spruce in the Czech Republic using a generalized algebraic difference approach. Journal of Forest Science. 2017; 63(5): 227–238. DOI: https://doi.org/10.17221/135/2016-JFS.
22. Lebedev A.V., Kuz'michev V.V. Postroenie bonitetnoy shkaly s ispol'zovaniem obobschennogo algebraicheskogo raznostnogo podhoda. Sibirskiy lesnoy zhurnal. 2022; 3: 48-58. DOI: https://doi.org/10.15372/SJFS20220306.
23. Cieszewski C.J. Developing a Well-Behaved Dynamic Site Equation Using a Modified Hossfeld IV Function Y3 = (axm)/(c + xm–1), a Simplified Mixed-Model and Scant Subalpine Fir Data. Forest Science. 2003; 49(4): 539–554. DOI: https://doi.org/10.1093/forestscience/49.4.539.
24. Cieszewski C.J., Strub M., Zasada M. New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe. Forest Ecology and Management. 2007; 243: 83–93. DOI: https://doi.org/10.1016/j.foreco.2007.02.025.
25. Cieszewski C.J. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research. 2005; 31: 165–173. DOI: https://doi.org/10.1139/cjfr-31-1-165.
26. Cieszewski C.J. Comparing fixed-and variable-base-age polymorphic site equations having single versus multiple asymptotes. Forest Science. 2002: 48(1): 7–23. DOI: https://doi.org/10.1093/forestscience/48.1.7.
27. Cieszewski C.J., Zasada M., Strub M. Analysis of different base models and methods of site model derivation for Scots pine. Forest Science. 2006; 52(2): 187–197. DOI: https://doi.org/10.1093/forestscience/52.2.187.
28. Thapa R., Burkhart H.E. Modeling Stand-Level Mortality of Loblolly Pine (Pinus taeda L.) Using Stand, Climate, and Soil Variables. Forest Science. 2015; 61: 1-13. DOI: https://doi.org/10.5849/forsci.14-125.
29. Hevia A., Vilčko F., Álvarez-González J.G. Dynamic stand growth model for Norway spruce forests based on long-term experiments in Germany. Recursos Rurais. 2013; 9: 45-54. Rezhim dostupa: http://hdl.handle.net/10347/16271.
30. Mason E.G. Growth and yield modelling in New Zealand. Chilean research consortium, BIOCOMSAAt. Chile: Valdivia, 2011. URL: https://www.researchgate.net/publication/261180496_Growth_and_yield_modelling_in_New_Zealand.
31. Stankova T.V., Diéguez-Aranda U. Derivation and analysis of new stand-level mortality models based on existing growth equations. Ecological Research. 2014; 29(2): 319-330. DOI: https://doi.org/10.1007/s11284-014-1126-5.
32. Neter J., Kutner M.H., Nachtsheim C.J., Wasserman W. Applied Linear Statistical Models. Chicago: Irwin, 1996: 1408. URL: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/724709.
33. Lebedev A.V., Kuz'michev V.V. Taksacionnye pokazateli sosnovyh drevostoev po dannym dolgovremennyh nablyudeniy. Sibirskiy lesnoy zhurnal. 2023; 2: 3-16. DOI: https://doi.org/10.15372/SJFS20230201.
34. Rogozin M.V. Pyat' osnovnyh zakonov v razvitii drevostoev. Nauchnoe obozrenie. Biologicheskie nauki. 2019; 3: 32-36. URL: https://www.elibrary.ru/item.asp?id=40934409.
35. Filipchuk A.N., Malysheva N.V., Zolina T.A., Fedorov S.V., Berdov A.M., Kosicyn V.N., Yugov A.N., Kinigopulo P.S. Analiticheskiy obzor kolichestvennyh i kachestvennyh harakteristik lesov Rossiyskoy Federacii: itogi pervogo cikla gosudarstvennoy inventarizacii lesov. Lesohozyaystvennaya informaciya. 2022; 1: 5-34. DOI: https://doi.org/10.24419/LHI.2304-3083.2022.1.01.
36. McCullagh A., Black K., Nieuwenhuis M. Evaluation of tree and stand-level growth models using national forest inventory data // European Journal of Forest Research. 2017; 136: 251–258. DOI: https://doi.org/10.1007/s10342-017-1025-8.
37. Allen II M.G., Antón-Fernández C., Astrup R. A stand-level growth and yield model for thinned and unthinned managed Norway spruce forests in Norway. Scandinavian Journal of Forest Research. 2020; 35(5–6): 238–251. DOI: https://doi.org/10.1080/02827581.2020.1773525.
38. Vanclay J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford UK: CAB International, 1994: 312. URL: https://espace.library.uq.edu.au/view/UQ:8211.
39. Gómez-García E., Crecente-Campo E., Stankova T., Rojo A., Diéguez Aranda U. Dynamic growth model for birch stands in northwestern Spain. Forestry Ideas. 2010; 16(2): 211-220. URL: https://forestry-ideas.info/files/issue/Forestry_Ideas_BG_2010_16_2_9.pdf.
40. Gómez-García E., Crecente-Campo F., Tobin B., Hawkins M., Nieuwenhuis M., Diéguez-Aranda U. A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe. Forestry: An International Journal of Forest Research. 2014; 87(1): 165–176. DOI: https://doi.org/10.1093/forestry/cpt045.