Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
A multi-zone one-dimensional model based on a one-dimensional Gaussian model of fire in the forest has been developed. The optimization problem of calculating the average integral temperature in a forest with a multi-zone location of fire has been solved. It is shown that when using the Gaussian multizonal ignition model, the average integral temperature decreases with increasing distance from the edge to the center of the territory of multizonal fires. The possibility of using a one-dimensional Gaussian model of a single-zone fire location for early detection of fire in the forest by emission and absorption characteristics is considered. It is shown that the combined use of these features, in combination with the Gaussian model, makes it possible to increase the sensitivity of fire detection in the forest. An emission-absorption method for early detection of forest fires is proposed. It is shown that the sensitivity of fire detection in the proposed method is higher than with the single use of emission and adsorption methods. A comprehensive index is proposed - an indicator of forest fire safety, taking into account such factors as soil moisture content, wind speed, terrain height, soil reflective spectrum and its dependence on soil moisture content. The extreme nature of the proposed complex index is noted depending on the moisture content of the soil. This property allows you to balance the proportion of fire safety improvement due to particular safety criteria (Pareto optimization principle) in order to achieve maximum reliability of the resulting total-weighted assessment
forest fire modeling; emission-absorption method, early detection of forest fires, multi-criteria optimization, sensitivity
1. Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollock, and W. Seiler, 1979, Biomass burning as a source of atmospheric gases: CO, H2, N20, NO, CH3C1, and COS, Nature, 282:253-256.
2. Crutzen, P. J. and M. O. Andreae, 1990, Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles, Science, 250:1669-1678.
3. Kaufman, Y. J., A. Setzer, D. Ward, D. Tanre, B. N. Holben, P. Menzel, M. C. Pereira and R. Rasmussen, 1992, Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A). J. Geophysical Res., 97:14581-14599.
4. Radke L. F., Hegg D. A., Hobbs P. V., Dance J. D., Lyons J. H., et al. Particulate and trace gas emissions from large biomass fires in North America// Global biomass burning. Pp. 209-224. Cambridge, Mass. 1991.
5. Penner, J. E., R. E. Dickenson, and C. A. ONeill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256:1432-1434.
6. N.L. Kazanskiy, R.V. Skidanov, A.V. Nikonorov and L.L. Doskolovich, Intelligent video systems for unmanned aerial vehicles based on diffractive optics and deep learning. Proc. SPIE 11516(115161Q), (2020).
7. F. Ferreira-Leite, A. Bento-Goncalves, A. Vieira, A. Nunes, and L. Lourenco. Incidence and Recurrence of Large Forest Fires in Mainland Portugal . Natural Hazards 84, 1035- 1053 (2016)
8. AT Guriev and RA Aleshko, Adapting the combined database of cartographic and attribute information of forest plantations by automating remote sensing data interpretation. Earth From Space-The most effective solutions, pp. 233-234, (2009).
9. R. Ramakrishna, M. Rajeevan, and S. Ramakrishna, “Pre-diction of severe thunderstorms over Sriharikota Island byusing the WRF-ARW operational model,” SPIE Proceedings,vol. 9882, Article ID 988214, 2016.
10. R. HussinM and R. Juhari, “Detection using image processingbased techniques,” Indian Journal of Computer Science andEngineering, vol. 41, 2012.
11. F. Guede-Fern´andez, L. Martins, R. V. de Almeida,H. Gamboa, and P. Vieira, “A deep learning based objectidentification system for forest fire detection,” Fire, vol. 4,no. 4, p. 75, 2021.
12. Β. Butler and J. Cohen, “Firefighter Safety Zones: A Theoretical Model Based on Radiative Heating”. Int. J. Wildland Fire 8(2):73-77, 1998.
13. W. Pitts, E. Braun, R. Peacock, H. Mitler, E. Johnsson, P. Reneke, L. Blevins, “Temperature Uncertainties for Bare-Bead and Aspirated Thermocouple Measurements in Fire Environments,” In Proc. Annual Conference on Fire Research, Nov. 1999, pp.15-16.
14. F. Kurt, “Prometheus Fire Growth Model: Design and Incorpo-ration of Spotting and Breaching of Fire Break Functionality,” in Post-Fire Research Workshop April 27, 2005.
15. Manolakos E. S., Manatakis D. V., Xanthopoulos G. Temperature field modeling and simulation of wireless sensor network behavior during a spreading wildfire// 16th European signal conference (EUSIPCO 2008). Lausanne, Switzerland. August 25-29. 2008.
16. El'sgol'c L. E. Differencial'nye uravneniya i variacionnye ischislenie. M. Nauka. 1974. Str. 432.
17. Dennison P.E. (2006). Fire detection in imaging spectrometer data using atmospheric carbon dioxide absorption. International Journal of Remote Sensing, 27, 3049-3055.
18. Carnicer J., Alegria A., Kopoulos C. G., Giuseppe F. D., Karali A., Koutsias N., et al. Global warming is shifting the relationships between fire weather and realized fire induced CO2 emissions in Europe// Scientific Reports. 2022. 12.10365. https://doi.org/10.1038/s41598-022-14480-8.
19. Carrega, P. & Jeronino, N. (2007) Risque météorologique d’incendie de forêt et méthodes de spatialisation pour une cartographie à fine échelle. Actes du XXeme colloque international de l’AIC , 168-173.
20. Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. ( (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irr. & Drain. Paper 56, UN-FAO, Rome .
21. Jibo Y., Tian Q. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands// ISPRS Journal of photogrammetry and remote sensing. July 2019.
22. Leng, P., Li, Z.L., Duan, S.B., Gao, M.F., Huo, H.Y., 2017. A practical approach for deriving all-weather soil moisture 659 content using combined satellite and meteorological data. ISPRS J. Photogramm. Remote Sens. 131, 40–51. https://doi.org/10.1016/j.isprsjprs.2017.07.013
23. Wolka, K., Mulder, J., Biazin, B., 2018. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 207, 67–79. https://doi.org/10.1016/j.agwat.2018.05.016.
24. Zhang, D., Zhou, G., 2016. Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors 16, 1-29. https://doi.org/10.3390/s16081308.
25. Zhang, C., Mishra, D.R., Pennings, S.C., 2019. Mapping salt marsh soil properties using imaging spectroscopy. ISPRS J. Photogramm. Remote Sens. 148, 221–234. https://doi.org/10.1016/j.isprsjprs.2019.01.006.
26. Kumar, S. V., Dirmeyer, P.A., Peters-Lidard, C.D., Bindlish, R., Bolten, J., 2018. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 204, 392–400. https://doi.org/10.1016/j.rse.2017.10.016.
27. Whalley, W.R., Leedsharrison, P.B., Bowman, G.E., 1991. Estimation of Soil Moisture Status Using Near Infrared Reflectance. Hydrol. Process. 5, 321–327. https://doi.org/10.1002/hyp.3360050312.
28. Haubrock, S.N., Chabrillat, S., Lemmnitz, C., Kaufmann, H., 2008. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote Sens. 29, 3–29. https://doi.org/10.1080/01431160701294695.
29. Fabre, S., Briottet, X., Lesaignoux, A., 2015. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 μm domain. Sensors (Switzerland) 15, 3262–3281. https://doi.org/10.3390/s150203262.
30. Fu, P., Weng, Q., 2018. Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS J. Photogramm. Remote Sens. 146, 65–73. https://doi.org/10.1016/j.isprsjprs.2018.09.003.
31. Lobell, D.B., Asner, G.P., 2002. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 66, 722–727. https://doi.org/10.2136/sssaj2002.7220.