Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Natural chymosin production is an expensive and complex process associated with ethical issues. The article introduces recombinant chymosin Camelus dromedarius (rChn-Cam) isolated from a P. pastoris expression system and optimized for different nutrient media at different zeocin concentrations. The sequence of prochymosin gene was obtained from NCBI BLAST. GS115/his4 P. prastoris served as a producer strain. The pPICZ(alpha) B vector with the AOXI promoter made it possible to construct the expression cassette. The experiment involved methods of genetical engineering and strain cultivation. The recombinant His-Tag-labelled proteins were isolated by the method of metal-affinity chromatography and analyzed using PAG electrophoresis and Western-blot analysis. The molecular weight was determined by MALDI-TOF MS while the concentration was defined spectrophotometrically. The shuttle expression plasmid pPICZ(alpha)B/proCYM_camel_pp_IDT revealed that the cell mass expansion of P. pastoris GS115/his4 (Mut+) should be performed with a preliminary introduction of 0.5% methanol. After the transformation of P. pastoris GS115/his4 and obtaining a strain-producer of P. pastoris/pPICZ(alpha)B/proCYM_camel_pp_IDT, the rate of cell mass gain started to correlate with the zeocin concentrations in two different media. Medium YPD was not fornified and contained 50, 100, and 200 μg/mL zeocin. MediumYPD was fortified with 0.00004% biotin and 1% glycerol and included 50, 100, and 200 μg/mL zeocin. The strain-producer grew better in the medium with a zeocin concentration of 50 μg/mL. The mass of rChn-Cam was 35.673 kDa after isolation and purification. When the pH of the substrate rose from 5.0 to 6.5, the coagulation activity decreased by 24%. The thermal inactivation threshold of rChn-Cam was 40–45°C. The unit of coagulation activity decreased as the zeocin concentration went up. The rChn-Cam concentration was in inverse correlation with the substrate coagulation time. In this research, the rChn-Cam obtained in the expression system of P. prastoris proved to be a good alternative to rChn used in the cheese industry.
genetic construct, recombinant chymosin, Camelus dromedarius, vector, plasmid, yeast Pichia pastoris, milk-setting activity, thermostability, chymosin purification
1. Foltmann, B. Prochymosin and chymosin (prorennin and rennin) / B. Foltmann // Biochemical Journal. 1969. № 115. P. 3–4. https://doi.org/10.1042/bj1150003p
2. Wang, N. Expression and characterization of camel chymosin in Pichia pastoris / N. Wang [et al.] // Protein Expression and Purification. 2015. № 111. P. 75–81. https://doi.org/10.1016/j.pep.2015.03.012
3. Uniacke-Lowe, T. Chymosin, pepsins and other aspartyl proteinases: Structures, functions, catalytic mechanism and milk-clotting properties // Cheese. Chemistry, Physics and Microbiology / T. Uniacke-Lowe, P. F. Fox. – UK: Academic Press, 2017. – R. 69–113. https://doi.org/10.1016/B978-0-12-417012-4.00004-1
4. Akishev, Z. Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk / Z. Akishev, S. Aktayeva, A. Kiribayeva // Biology. 2022. № 11. e1545. https://10.3390/biology11111545
5. Myagkonosov, D. S. Proteoliticheskaya aktivnost' molokosvertyvayuschih fermentov raznogo proishozhdeniya / D. S. Myagkonosov, D. V. Abramov, I. N. Delickaya, E. G. Ovchinnikova // Pischevye sistemy. 2022. T. 5, № 1. S. 47–54. https://doi.org/10.21323/2618-9771-2022-5-1-47-54; https://elibrary.ru/fkaojb
6. Akishev, Zh. Milk-clotting activity of recombinant bovine and camel chymosin for cow's, goat's and ewes' milk / Zh. Akishev [et al.] // Eurasian Journal of Applied Biotechnology. 2023. № 2. P. 61–68. https://doi.org/10.11134/btp.2.2023.8; https://elibrary.ru/ukhqoj
7. Balabova, D. V. Biochemical properties of a promising milk-clotting enzyme, Moose (Alces alces) recombinant chymosin / D. V. Balabova [et al.] // Foods. 2023. Vol. 12. № 20. e3772. https://doi.org/10.3390/foods12203772
8. Murashkin, D. E. Analiz nekotoryh biohimicheskih svoystv rekombinantnogo himozina sibirskoy kosuli (Capreolus pygargus), poluchennogo v kul'ture kletok mlekopitayuschih (CHO-K1) / D. E. Murashkin, S. V. Belen'kaya, A. A. Bondar' [i dr.] // Biohimiya. 2023. T. 88. Vyp. 9. S. 1556–1569. https://doi.org/10.31857/S0320972523090087; https://elibrary.ru/wwnnwk
9. Gilliland, G. L. The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution / G. L. Gilliland [et al.] // Proteins. 1990. № 8. P. 82–101. https://doi.org/10.1002/prot.340080110
10. Holt, C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods // C. Holt [et al.] // Journal of Dairy Science. 2013. № 96. P. 6127–6146. https://doi.org/10.3168/jds.2013-6831
11. Lopes-Marques, M. Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies / M. Lopes-Marques, R. Ruivo, E. Fonseca // Molecular Phylogenetics and Evolution. 2017. № 116. P. 78–86. https://doi.org/10.1016/j.ympev.2017.08.014
12. Akishev, Z. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris / Z. Akishev [et al.] // Heliyon. 2021. Vol. 7(5). e07137. https://doi.org/10.1016/j.heliyon.2021.e07137
13. Flamm, E. L. How FDA approved chymosin: A case history / E. L. Flamm // BioTechnology. 1991. № 9. P. 349–351. https://doi.org/10.1038/nbt0491-349
14. Johnson, M. E. A 100-Year Review: Cheese production and quality / M. E. Johnson // Journal of Dairy Science. 2017. № 100. P. 9952–9965. https://doi.org/10.3168/jds.2017-12979
15. Balabova, D. V. Biochemical and technological properties of moose (Alces alces) recombinant chymosin / D. V. Balabova, A. P. Rudometov, S. V. Belenkaya // Journal of Genetics and Breeding. 2022. Vol. 26, № 3. P. 240–249. https://doi.org/10.18699/VJGB-22-31; https://elibrary.ru/wnatqw
16. da Silva, R. R. Evaluation of the milk clotting properties of an aspartic peptidase secreted by Rhizopus microspores // R. R. da Silva [et al.] // Preparative Biochemistry and Biotechnology. 2020.Vol. 50(3). P. 226-233. https://doi.org/10.1080/10826068.2019.1683861
17. Bansal, N. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese / N. Bansal [et al.] // International Dairy Journal. 2009. Vol. 19 (9). P. 510–517. https://doi.org/10.1016/j.idairyj.2009.03.010
18. Moynihan, A. C. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese / A. C. Moynihan // Journal of Dairy Science. 2014. Vol. 97(1). P. 85–96. https://doi.org/10.3168/jds.2013-7081
19. González-Velázquez, D. A. Exploring the milk-clotting and proteolytic activities in different tissues of Vallesia glabra: a new source of plant proteolytic enzymes / D. A. González-Velázquez [et al.] // Applied Biochemistry and Biotechnology. 2021. Vol. 193. P. 389–404. https://doi.org/10.1007/s12010-020-03432-5
20. Sbhatu, D. B. Ficus palmata FORSKÅL (BELES ADGI) as a source of milk clotting agent: a preliminary research / D. B. Sbhatu, H. T. Tekle, K. H. Tesfamariam // BMC Research Notes. 2020. Vol. 13. P. 446. https://doi.org/10.1186/s13104-020-05293-x
21. Belen'kaya, S. V. Razrabotka producenta rekombinantnogo himozina marala na osnove drozhzhey Kluyveromyces lactis / S. V. Belen'kaya, V. V. El'chaninov, D. N. Scherbakov // Biotehnologiya. 2021. T. 37, № 5. S. 20–27. https://doi.org/10.21519/0234-2758-2021-37-5-20-27; https://elibrary.ru/qzyxec
22. Sinicyn, A. P. Poluchenie promyshlenno vazhnyh fermentov na osnove ekspressionnoy sistemy griba Penicillium verruculosum / A. P. Sinicyn, O. A. Sinicyna, A. M. Rozhkova // Biotehnologiya. 2020. T. 36. № 6. S. 17–34. https://doi.org/10.21519/0234-2758-2020-36-6-17-34; https://elibrary.ru/qyxxah
23. Baghban, R. Yeast expression systems: overview and recent advances / R. Baghban [et al.] // Molecular Biotechnology. 2019. Vol. 61(5). P. 365–384. https://doi.org/10.1007/s12033-019-00164-8
24. Patra, P. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts / P. Patra [et al.] // Biotechnology Advances. 2021. № 47. e107695. https://doi.org/10.1016/j.biotechadv.2021.107695
25. Jensen, J. L. Camel and bovine chymosin: the relationship between their structures and cheese-making properties / J. L. Jensen [et al.] // Acta Crystallographica Section D: Biological Crystallography. 2013. Vol. 69. P. 901–913. https://doi.org/10.1107/S0907444913003260
26. Fox, P. F. Enzymatic coagulation of milk // Fundamentals of Cheese Science / P. F. Fox [et al.]. New York: Springer, 2017. – P. 185–229. https://doi.org/10.1007/978-1-4899-7681-9_7
27. Belen'kaya, S. V. Osnovnye biohimicheskie svoystva rekombinantnyh himozinov (obzor) / S. V. Belen'kaya, D. V. Balabova, A. N. Belov [i dr.] // Prikladnaya biohimiya i mikrobiologiya. 2020. T. 56, № 4. S. 315–326. https://doi.org/10.31857/S0555109920040030; https://elibrary.ru/ahzlih
28. Gumus, P. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir / P. Gumus, A. A. Hayaloglu // Journal of Dairy Science. 2019. Vol. 102(7). P. 5945–5956. https://doi.org/10.3168/jds.2018-15671
29. Al-Zoreky, N. S. Using recombinant camel chymosin to make white soft cheese from camel milk // N. S. Al-Zoreky, F. S. Almathen // Food Chemistry. 2021. № 337. e127994. https://doi.org/10.1016/j.foodchem.2020.127994
30. Belen'kaya, S. V. Razrabotka producenta rekombinantnogo himozina marala na osnove drozhzhey Kluyveromyces lactis / S. V. Belen'kaya, V. V. El'chaninov, D. N. Scherbakov // Biotehnologiya. 2021. T. 37. № 5. S. 20–27. https://doi.org/10.21519/0234-2758-2021-37-5-20-27; https://elibrary.ru/qzyxec
31. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 / U. K. Laemmli // Nature. 1970. Vol. 227(5259). P. 680–685. https://doi.org/10.1038/227680a0
32. Rudometov, A. P. Issledovanie fermentativnoy stabil'nosti zhidkih preparatov rekombinantnogo himozina korovy (Bos taurus taurus L.) / A. P. Rudometov, S. V. Belen'kaya, D. N. Scherbakov [et al.] // Syrodelie i maslodelie. 2017. № 6. S. 40–43. https:// elibrary.ru/zudmcr
33. Ageitos, J. M. Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13 / J. M. Ageitos [et al.] // Journal of Applied Microbiology. 2007. № 103(6). P. 2205–2213. https://doi.org/10.1111/j.1365-2672.2007.03460.x
34. Malik, A. A review on Pichia pastoris: A successful tool for expression of recombinant proteins / A. Malik, A. Gupta, S. Dahiya [et al.] // The Pharma Innovation Journal. 2021. Vol. 10(11). P. 550–556.