RECOMBINANT CHYMOSIN OF CAMELUS DROMEDARIUS IN PICHIA PASTORIS EXPRESSION SYSTEM: PURIFICATION AND ENZYMATIC PROFILE
Abstract and keywords
Abstract (English):
Natural chymosin production is an expensive and complex process associated with ethical issues. The article introduces recombinant chymosin Camelus dromedarius (rChn-Cam) isolated from a P. pastoris expression system and optimized for different nutrient media at different zeocin concentrations. The sequence of prochymosin gene was obtained from NCBI BLAST. GS115/his4 P. prastoris served as a producer strain. The pPICZ(alpha) B vector with the AOXI promoter made it possible to construct the expression cassette. The experiment involved methods of genetical engineering and strain cultivation. The recombinant His-Tag-labelled proteins were isolated by the method of metal-affinity chromatography and analyzed using PAG electrophoresis and Western-blot analysis. The molecular weight was determined by MALDI-TOF MS while the concentration was defined spectrophotometrically. The shuttle expression plasmid pPICZ(alpha)B/proCYM_camel_pp_IDT revealed that the cell mass expansion of P. pastoris GS115/his4 (Mut+) should be performed with a preliminary introduction of 0.5% methanol. After the transformation of P. pastoris GS115/his4 and obtaining a strain-producer of P. pastoris/pPICZ(alpha)B/proCYM_camel_pp_IDT, the rate of cell mass gain started to correlate with the zeocin concentrations in two different media. Medium YPD was not fornified and contained 50, 100, and 200 μg/mL zeocin. MediumYPD was fortified with 0.00004% biotin and 1% glycerol and included 50, 100, and 200 μg/mL zeocin. The strain-producer grew better in the medium with a zeocin concentration of 50 μg/mL. The mass of rChn-Cam was 35.673 kDa after isolation and purification. When the pH of the substrate rose from 5.0 to 6.5, the coagulation activity decreased by 24%. The thermal inactivation threshold of rChn-Cam was 40–45°C. The unit of coagulation activity decreased as the zeocin concentration went up. The rChn-Cam concentration was in inverse correlation with the substrate coagulation time. In this research, the rChn-Cam obtained in the expression system of P. prastoris proved to be a good alternative to rChn used in the cheese industry.

Keywords:
genetic construct, recombinant chymosin, Camelus dromedarius, vector, plasmid, yeast Pichia pastoris, milk-setting activity, thermostability, chymosin purification
Text
Text (PDF): Read Download
References

1. Foltmann, B. Prochymosin and chymosin (prorennin and rennin) / B. Foltmann // Biochemical Journal. 1969. № 115. P. 3–4. https://doi.org/10.1042/bj1150003p

2. Wang, N. Expression and characterization of camel chymosin in Pichia pastoris / N. Wang [et al.] // Protein Expression and Purification. 2015. № 111. P. 75–81. https://doi.org/10.1016/j.pep.2015.03.012

3. Uniacke-Lowe, T. Chymosin, pepsins and other aspartyl proteinases: Structures, functions, catalytic mechanism and milk-clotting properties // Cheese. Chemistry, Physics and Microbiology / T. Uniacke-Lowe, P. F. Fox. – UK: Academic Press, 2017. – R. 69–113. https://doi.org/10.1016/B978-0-12-417012-4.00004-1

4. Akishev, Z. Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk / Z. Akishev, S. Aktayeva, A. Kiribayeva // Biology. 2022. № 11. e1545. https://10.3390/biology11111545

5. Myagkonosov, D. S. Proteoliticheskaya aktivnost' molokosvertyvayuschih fermentov raznogo proishozhdeniya / D. S. Myagkonosov, D. V. Abramov, I. N. Delickaya, E. G. Ovchinnikova // Pischevye sistemy. 2022. T. 5, № 1. S. 47–54. https://doi.org/10.21323/2618-9771-2022-5-1-47-54; https://elibrary.ru/fkaojb

6. Akishev, Zh. Milk-clotting activity of recombinant bovine and camel chymosin for cow's, goat's and ewes' milk / Zh. Akishev [et al.] // Eurasian Journal of Applied Biotechnology. 2023. № 2. P. 61–68. https://doi.org/10.11134/btp.2.2023.8; https://elibrary.ru/ukhqoj

7. Balabova, D. V. Biochemical properties of a promising milk-clotting enzyme, Moose (Alces alces) recombinant chymosin / D. V. Balabova [et al.] // Foods. 2023. Vol. 12. № 20. e3772. https://doi.org/10.3390/foods12203772

8. Murashkin, D. E. Analiz nekotoryh biohimicheskih svoystv rekombinantnogo himozina sibirskoy kosuli (Capreolus pygargus), poluchennogo v kul'ture kletok mlekopitayuschih (CHO-K1) / D. E. Murashkin, S. V. Belen'kaya, A. A. Bondar' [i dr.] // Biohimiya. 2023. T. 88. Vyp. 9. S. 1556–1569. https://doi.org/10.31857/S0320972523090087; https://elibrary.ru/wwnnwk

9. Gilliland, G. L. The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution / G. L. Gilliland [et al.] // Proteins. 1990. № 8. P. 82–101. https://doi.org/10.1002/prot.340080110

10. Holt, C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods // C. Holt [et al.] // Journal of Dairy Science. 2013. № 96. P. 6127–6146. https://doi.org/10.3168/jds.2013-6831

11. Lopes-Marques, M. Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies / M. Lopes-Marques, R. Ruivo, E. Fonseca // Molecular Phylogenetics and Evolution. 2017. № 116. P. 78–86. https://doi.org/10.1016/j.ympev.2017.08.014

12. Akishev, Z. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris / Z. Akishev [et al.] // Heliyon. 2021. Vol. 7(5). e07137. https://doi.org/10.1016/j.heliyon.2021.e07137

13. Flamm, E. L. How FDA approved chymosin: A case history / E. L. Flamm // BioTechnology. 1991. № 9. P. 349–351. https://doi.org/10.1038/nbt0491-349

14. Johnson, M. E. A 100-Year Review: Cheese production and quality / M. E. Johnson // Journal of Dairy Science. 2017. № 100. P. 9952–9965. https://doi.org/10.3168/jds.2017-12979

15. Balabova, D. V. Biochemical and technological properties of moose (Alces alces) recombinant chymosin / D. V. Balabova, A. P. Rudometov, S. V. Belenkaya // Journal of Genetics and Breeding. 2022. Vol. 26, № 3. P. 240–249. https://doi.org/10.18699/VJGB-22-31; https://elibrary.ru/wnatqw

16. da Silva, R. R. Evaluation of the milk clotting properties of an aspartic peptidase secreted by Rhizopus microspores // R. R. da Silva [et al.] // Preparative Biochemistry and Biotechnology. 2020.Vol. 50(3). P. 226-233. https://doi.org/10.1080/10826068.2019.1683861

17. Bansal, N. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese / N. Bansal [et al.] // International Dairy Journal. 2009. Vol. 19 (9). P. 510–517. https://doi.org/10.1016/j.idairyj.2009.03.010

18. Moynihan, A. C. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese / A. C. Moynihan // Journal of Dairy Science. 2014. Vol. 97(1). P. 85–96. https://doi.org/10.3168/jds.2013-7081

19. González-Velázquez, D. A. Exploring the milk-clotting and proteolytic activities in different tissues of Vallesia glabra: a new source of plant proteolytic enzymes / D. A. González-Velázquez [et al.] // Applied Biochemistry and Biotechnology. 2021. Vol. 193. P. 389–404. https://doi.org/10.1007/s12010-020-03432-5

20. Sbhatu, D. B. Ficus palmata FORSKÅL (BELES ADGI) as a source of milk clotting agent: a preliminary research / D. B. Sbhatu, H. T. Tekle, K. H. Tesfamariam // BMC Research Notes. 2020. Vol. 13. P. 446. https://doi.org/10.1186/s13104-020-05293-x

21. Belen'kaya, S. V. Razrabotka producenta rekombinantnogo himozina marala na osnove drozhzhey Kluyveromyces lactis / S. V. Belen'kaya, V. V. El'chaninov, D. N. Scherbakov // Biotehnologiya. 2021. T. 37, № 5. S. 20–27. https://doi.org/10.21519/0234-2758-2021-37-5-20-27; https://elibrary.ru/qzyxec

22. Sinicyn, A. P. Poluchenie promyshlenno vazhnyh fermentov na osnove ekspressionnoy sistemy griba Penicillium verruculosum / A. P. Sinicyn, O. A. Sinicyna, A. M. Rozhkova // Biotehnologiya. 2020. T. 36. № 6. S. 17–34. https://doi.org/10.21519/0234-2758-2020-36-6-17-34; https://elibrary.ru/qyxxah

23. Baghban, R. Yeast expression systems: overview and recent advances / R. Baghban [et al.] // Molecular Biotechnology. 2019. Vol. 61(5). P. 365–384. https://doi.org/10.1007/s12033-019-00164-8

24. Patra, P. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts / P. Patra [et al.] // Biotechnology Advances. 2021. № 47. e107695. https://doi.org/10.1016/j.biotechadv.2021.107695

25. Jensen, J. L. Camel and bovine chymosin: the relationship between their structures and cheese-making properties / J. L. Jensen [et al.] // Acta Crystallographica Section D: Biological Crystallography. 2013. Vol. 69. P. 901–913. https://doi.org/10.1107/S0907444913003260

26. Fox, P. F. Enzymatic coagulation of milk // Fundamentals of Cheese Science / P. F. Fox [et al.]. New York: Springer, 2017. – P. 185–229. https://doi.org/10.1007/978-1-4899-7681-9_7

27. Belen'kaya, S. V. Osnovnye biohimicheskie svoystva rekombinantnyh himozinov (obzor) / S. V. Belen'kaya, D. V. Balabova, A. N. Belov [i dr.] // Prikladnaya biohimiya i mikrobiologiya. 2020. T. 56, № 4. S. 315–326. https://doi.org/10.31857/S0555109920040030; https://elibrary.ru/ahzlih

28. Gumus, P. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir / P. Gumus, A. A. Hayaloglu // Journal of Dairy Science. 2019. Vol. 102(7). P. 5945–5956. https://doi.org/10.3168/jds.2018-15671

29. Al-Zoreky, N. S. Using recombinant camel chymosin to make white soft cheese from camel milk // N. S. Al-Zoreky, F. S. Almathen // Food Chemistry. 2021. № 337. e127994. https://doi.org/10.1016/j.foodchem.2020.127994

30. Belen'kaya, S. V. Razrabotka producenta rekombinantnogo himozina marala na osnove drozhzhey Kluyveromyces lactis / S. V. Belen'kaya, V. V. El'chaninov, D. N. Scherbakov // Biotehnologiya. 2021. T. 37. № 5. S. 20–27. https://doi.org/10.21519/0234-2758-2021-37-5-20-27; https://elibrary.ru/qzyxec

31. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 / U. K. Laemmli // Nature. 1970. Vol. 227(5259). P. 680–685. https://doi.org/10.1038/227680a0

32. Rudometov, A. P. Issledovanie fermentativnoy stabil'nosti zhidkih preparatov rekombinantnogo himozina korovy (Bos taurus taurus L.) / A. P. Rudometov, S. V. Belen'kaya, D. N. Scherbakov [et al.] // Syrodelie i maslodelie. 2017. № 6. S. 40–43. https:// elibrary.ru/zudmcr

33. Ageitos, J. M. Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13 / J. M. Ageitos [et al.] // Journal of Applied Microbiology. 2007. № 103(6). P. 2205–2213. https://doi.org/10.1111/j.1365-2672.2007.03460.x

34. Malik, A. A review on Pichia pastoris: A successful tool for expression of recombinant proteins / A. Malik, A. Gupta, S. Dahiya [et al.] // The Pharma Innovation Journal. 2021. Vol. 10(11). P. 550–556.

Login or Create
* Forgot password?