from 01.01.1992 to 01.01.2025
Glazov, Izhevsk, Russian Federation
UDC 37.02
UDC 31
The article is devoted to the problem of studying the semantic space of the scientific concepts "informatics", "cybernetics", "robotics", "information and cybernetic worldview", "algorithmic thinking", etc. By analyzing the responses of the ChatGPT neural network and texts from Wikipedia, a list of terms with an indication of their number is obtained for each concept. Using a computer program, the cosine measure of proximity and the semantic distance between these lists are found, a matrix of concept proximity is obtained, and clusterization of objects is carried out. At the same time, the closest concepts (clusters) are combined into one cluster, the weight of which is calculated by summing the weights of its constituent clusters. Similar methods have been used to study the semantic space around the concept of "information and cybernet-ic thinking", which is understood as a special way of explaining the functioning of in-formation and cybernetic systems, involving the allocation of information flows and control chains and the use of basic ideas of informatics and cybernetics. A graph is constructed, the vertices of which correspond to the concepts being studied, and the edges correspond to the connections between them. In addition, clouds of concepts semantically close to "informatics" and "cybernetics" is identified. The results obtained characterize the objective features of the semantic space, which are determined by the content and methodology of teaching the basics of informatics and cybernetics. The method used allows us to explore the semantic spaces of other fields of knowledge.
didactics, informatics, cybernetics, concept, thinking, semantic space, computer methods, cosine proximity
1. Abushkin H.H., Dadonova A.V. Mezhpredmetnye svjazi v robototehnike kak sredstvo formirovanija kljuchevyh kompetencij uchashhihsja // Uchebnyj jekspe-riment v obrazovanii. 2014. № 3. pp. 32-35.
2. Andrievskaja N.K. Gibridnaja intellektual'naja mera ocenki semantiche-skoj blizosti // Problemy iskusstvennogo intellekta. – 2021. № 1.– pp. 4-17. EDN: https://elibrary.ru/ZDZKGK
3. Anisimov A.V. Metod vychislenija semanticheskoj blizosti-svjaznosti mezhdu slovami estestvennogo jazyka / A.V. Anisimov, A.A. Marchenko, V.K. Ki-senko // Ki-bernetika i sistemnyj analiz. – 2011. № 4. – pp. 18-27.
4. Vanjushkin A.S. Metody i algoritmy izvlechenija kljuchevyh slov / A.S. Van-jushkin, L.A. Grashhenko // Novye informacionnye tehnologii v avtomatizi-rovannyh sistemah. – 2016. № 19. – pp. 85–93.
5. Gniteckaja T.N. Osnovy teorii vnutripredmetnyh svjazej // Fizicheskoe obra-zovanie v vuzah. – 1999. № 2. – pp. 23-39. EDN: https://elibrary.ru/HTLKDT
6. Karjaeva M.S. Lingvostaticheskij analiz terminologii dlja postroenija tezaurusa predmetnoj oblasti // Modelirovanie i analiz informacionnyh sistem. − T. 22, № 6 (2015). − pp. 834–851.
7. Mayer R.V. Informacionno-kiberneticheskaja kartina mira i ee formi-rovanie u studentov pedagogicheskih special'nostej: monografija. – Glazov: Gla-zovskij gosu-darstvennyj pedagogicheskij institut, 2022. – 202 p. EDN: https://elibrary.ru/WBZMWG
8. Mayer R.V. Slozhnost' uchebnyh ponjatij i tekstov: monografija. – Gla-zov: GIPU, 2024. – 132 p. EDN: https://elibrary.ru/XWDTOK
9. Matveeva O.M. i dr. Sovremennye modeli mezhpredmetnyh svjazej / O.M. Matveeva, I.S. Matveeva, L.A. Matveeva, D.A. Romanov // Uchenye zapiski universite-ta im. P. F. Lesgafta. 2018. pp. 203-207.
10. Morozova Ju.I. Postroenie semanticheskih vektornyh prostranstv raz-lichnyh predmetnyh oblastej // Informatika i ee primenenija. − 2013. T. 7. Vyp. 1. − pp. 90–93. EDN: https://elibrary.ru/QCJCPZ
11. Pobedonosceva M.G., Shutikova M.I. Mezhpredmetnye svjazi informatiki // Vestnik TGU, t.12, vyp. 5, 2007. pp. 621–622.
12. Sinjakov A.P. Didakticheskie podhody k opredeleniju ponjatija «mezh-predmetnye svjazi». Izvestija Rossijskogo gosudarstvennogo pedagogicheskogo univer-siteta im. A.I. Gercena. 2009. Vyp. 113. pp. 197–202. EDN: https://elibrary.ru/KVRRFJ
13. Sheremet'eva S.O. Metody i modeli avtomaticheskogo izvlechenija klju-chevyh slov / S.O. Sheremet'eva, P.G. Osminin // Vestnik JuUrGU. Serija: Lingvistika. – 2015. T. 12. № 1. – pp. 76–81.
14. Manning C.D. An Introduction to Information Retrieval / C.D. Manning, P. Raghavan, H. Schütze. – Cambridge University Press. 2008. 528 p. DOI: https://doi.org/10.1017/CBO9780511809071
15. Turney P.D. From frequency to meaning: Vector space models of semantics / P.D. Turney, P. Pantel // J. Artificial Intelligence Research. Menlo Park, California: AAAI Press, 2010. No. 37. – pp. 141–188.
16. Vikipedija: https://ru.wikipedia.org



