Russian Federation
UDC 524.62
UV absorption lines in the spectra of quasars in the corona of the Andromeda galaxy show that within ≤0.15 Mpc the hot gas (~3∙105 K) contains a dynamic fraction of warm gas (~104 K) associated with shock waves (SW). SW are formed around the halos of satellite galaxies ≤15 kpc in size and the high-velocity clouds they form, 2–15 kpc in size, with a total mass of ~7∙109 M○, settling into the Galaxy in ~109 years, covering up to 37% of the sky. The total power of the SW of ~2∙1042 erg/s is emitted in the form of UV, X-ray and gamma radiation, as well as cosmic rays, the electrons in which (≥100 MeV) are braked by the magnetic field of MHD turbulences of the SW of 3 – 7 μG, forming GHz synchrotron radio emission. Subcosmic rays (electrons ≤100 keV) can heat the coronal gas (emitting at ~0.3 keV) and form bremsstrahlung in the region of ~30 keV. These types of radiation from the era of settling of small galaxies in the coronas of larger ones at z ~ 0.45 ± 0.15 can contribute to the background cosmic radiation with a total energy density of ~10-4 eV/cm3.
galactic coronas, high-velocity clouds, plasma shock waves
1. A.M. Prohorov. Fizicheskaya enciklopediya, t. 1. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1988. – 704 s.
2. I.S. Grigor'ev, E.Z. Meylihov. Fizicheskie velichiny. Spravochnik. – M.: Energoatomizdat. – 1991. – 1232 s.
3. F. Hammer, Y. Yang, F. Arenou, et al. Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies // The Astrophysical Journal. – 2018. – V. 860:76. – № 1. – 19 rr.
4. A.V. Tutukov, S.V. Vereschagin, M.D. Sizova. Razrushenie galaktik kak prichina poyavleniya zvezdnyh potokov // Astronomicheskiy zhurnal. – 2021. – T. 98. – № 11. – S. 883-900. DOI: https://doi.org/10.31857/S0004629921110074; EDN: https://elibrary.ru/DGAYTF
5. R. Ibata, B. Gibson. The Ghosts of Galaxies Past // Scientific American Magazine. – 2007. – V. 296. – № 4. – P. 40-45.
6. N. Tahir, M. López-Corredoira, F. De Paolis. The baryonic mass estimates of the Milky Way halo in the form of high-velocity clouds // New Astronomy. – 2025. – V. 115. – Art. 102328.
7. T. Westmeier. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey // Monthly Notices of the Royal Astronomical Society. – 2018. – V. 474. – Is. 1. – P. 289–299.
8. V. Vacca, T. Shimwell, R.A. Perley, et al. Spectral study of the diffuse synchrotron source in the galaxy cluster Abell 523 // Monthly Notices of the Royal Astronomical Society. – 2022. – V. 511. – Is. 3. – P. 3389–3407. DOI: https://doi.org/10.1093/mnras/stac287; EDN: https://elibrary.ru/FRJULI
9. F. Govoni , E. Orrù, A. Bonafede, et al. A radio ridge connecting two galaxy clusters in a filament of the cosmic web // Science. – 2019. – V. 364. – Is. 364(6444). – P. 981-984. DOI: https://doi.org/10.1126/science.aat7500; EDN: https://elibrary.ru/NNBUST
10. N. Lehner, et al. Project AMIGA: The Circumgalactic Medium of Andromeda // The Astrophysical Journal. – 2020. – V. 900:9 – N 1. – 44 pp. DOI: https://doi.org/10.3847/1538-4357/abaab6; EDN: https://elibrary.ru/QLUXYV
11. C. Alcock, et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations // The Astrophysical Journal. – 2000. – V. 542. – № 1. – R. 281-307.
12. S.Yu. Poroykov. Vklad zvezd v galo (korone) galaktik v opticheskoe fonovoe kosmicheskoe izluchenie // Zhurnal estestvennonauchnyh issledovaniy. – 2023. – T. 8. – № 3. – S. 2-19. EDN: https://elibrary.ru/HUZNNI
13. A.M. Prohorov. Fizicheskaya enciklopediya, t. 2. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 703 s.
14. A.M. Prohorov. Fizicheskaya enciklopediya, t. 5. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 784 s.
15. A.M. Prohorov. Fizicheskaya enciklopediya, t. 4. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1994. – 704 s.
16. A.V. Zasov, K.A. Postnov. Obschaya astrofizika. 2-e izd. ispr. i dopoln. Fryazino: Vek 2. – 2011. – 576 s. EDN: https://elibrary.ru/QJZICJ
17. A.M. Prohorov. Fizicheskaya enciklopediya, t. 3. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1992. – 672 s.
18. M.E. Putman, L. Staveley-Smith, K.C. Freeman, B.K. Gibson, D.G. Barnes. The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group // The Astrophysical Journal. – 2003. – V. 586. – № 1. – R. 170-194.
19. M.E. Putman, J.E.G. Peek, M.R. Joung. Gaseous Galaxy Halos // Review Article. – 2012. – V. 50. – P. 491–529.
20. Gil de Paz, S. Boissier, B.F. Madore, et al. The GALEX Ultraviolet Atlas of Nearby Galaxies // The Astrophysical Journal Supplement Series. – 2007. – V. 173. – № 2. – P. 185. DOI: https://doi.org/10.1086/516636; EDN: https://elibrary.ru/MJFJIV
21. F.J. Lockman, R.A. Benjamin, A.J. Heroux, G.I. Langston. The Smith Cloud: A High-Velocity Cloud Colliding with the Milky Way // The Astrophysical Journal. – 2008. – V. 679. – № 1. – L21 – L24.
22. D. Krishnarao, et al. Observations of a Magellanic Corona // Nature. – 2022. – V. 609. – P. 915–918. DOI: https://doi.org/10.1038/s41586-022-05090-5; EDN: https://elibrary.ru/NUZQBT
23. A.V. Zemlyakov, M.A. Eremin, I.G. Kovalenko, E.V. Zhukova. O prohozhdenii mezhzvezdnyh oblakov cherez spiral'nyy rukav diskovoy galaktiki // Modelirovanie, informatika i upravlenie. – 2020. – T. 23. – № 2. – S. 41-56.
24. S.Yu. Poroykov. Mehanizm formirovaniya «strannyh radio-krugov» // Zhurnal estestvennonauchnyh issledovaniy. – 2024. – T. 9. – № 4. – S. 82-99. EDN: https://elibrary.ru/FKPDWX
25. M.E. Putman, L. Staveley-Smith, K.C. Freeman, B.K. Gibson, D.G. Barnes. The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group // The Astrophysical Journal. – 2003. – V. 586. – № 1. – R. 170-194.
26. S.Yu. Poroykov. Harakteristiki pervyh zvezd i produktov ih evolyucii // Zhurnal estestvennonauchnyh issledovaniy. – 2023. – T. 8. – № 1. – S. 22-48. EDN: https://elibrary.ru/RWYDGQ
27. S. Bagnulo, J.D. Landstreet. New insight into the magnetism of degenerate stars from the analysis of a volume-limited sample of white dwarfs // Monthly Notices of the Royal Astronomical Society. – 2021. – V. 507. – Is. 4. – P. 5902–5951. DOI: https://doi.org/10.1093/mnras/stab2046; EDN: https://elibrary.ru/JHYAUF
28. Yi-Kuan Chiang, Ryu Makiya, Brice Ménard, Eiichiro Komatsu. The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography // The Astrophysical Journal. – 2020. – V. 902:56. – № 1. – 12 rr. DOI: https://doi.org/10.3847/1538-4357/abb403; EDN: https://elibrary.ru/CAMJMV
29. R.C. Henry. Diffuse background radiation // The Astrophysical Journal Letters. – 1999. – № 516. – № 2. – L49-L52.
30. Á. Bogdán, W.R. Forman, R.P. Kraft, C. Jones. Detection of a luminous hot X-ray corona around the massive spiral galaxy NGC 266 // The Astrophysical Journal. – 2013. – V. 772:98. – № 2. – 5 pp. DOI: https://doi.org/10.1088/0004-637X/772/2/98; EDN: https://elibrary.ru/RJAPUD
31. Á. Bogdán, W.R. Forman, M. Vogelsberger, et al. Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models // The Astrophysical Journal. – 2013. – V. 772:97. – № 2. – 18 pp. DOI: https://doi.org/10.1088/0004-637X/772/2/97; EDN: https://elibrary.ru/RJAPUN
32. A.L. Coil, S. Perrotta, D.S.N. Rupke, et al. Ionized gas extends over 40 kpc in an odd radio circle host galaxy // Nature. – 2024. – V. 625. – P. 459–462. DOI: https://doi.org/10.1038/s41586-023-06752-8; EDN: https://elibrary.ru/CKKFUR
33. Ya.B. Zel'dovich, N.D. Novikov. Stroenie i evolyuciya Vselennoy. – M.: Nauka. – 1975. – 736 s.
34. D. Volpi, L. Del Zanna, E. Amato, N. Bucciantini. Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton // Astronomy & Astrophysics. – 2008. – V. 485. - № 2. – P. 337-349.



