INDUCED BANDGAP AND MAGNETIC BEHAVIOR IN ZIGZAG GRAPHENE NANORIBBONS ON HEXAGONAL NITRIDE BORON: EDGE AND SUBSTRATE EFFECTS
Abstract and keywords
Abstract (English):
The results of DFT research on the band structure of zigzag graphene nanoribbons N-ZGNR/h-BN(0001) with ferro-and antiferromagnetic ordering are presented. It is suitable as a potential base for new materials for spintronics. Equilibrium parameters of the graphene nanoribbon atomic structure and boron nitride top layer are determined as well as the equilibrium bond length between atomic layers of the 8-ZGNR nanoribbon and the substrate h-BN(0001). Change regularities of the valence band electronic structure and of the energy gap induction in series 6-ZGNR-^ 8-ZGNR-^ 6-ZGNR/h-BN(0001)^ 8-ZGNR/h-BN(0001)^ graphene/h-BN(0001) are studied. Spin state features at Fermi level, as well as the roles of the edge effect and the effect of substrate in the formation of the band gap in 6(8)-ZGNR/h-BN(0001) system are discussed. It is shown that 340 meV energy gap appears in 6(8)-ZGNR/h-BN(0001) systems. The contribution of the graphene nanoribbon edge and substrate in opening this energy gap is differentiated. Local magnetic moments on the carbon atoms in graphene nanoribbons in the suspended state and on the substrate with ferro- and antiferromagnetic ordering are estimated. It is shown that the local magnetic moments on the carbon atoms in zigzag graphene nanoribbons 8-ZGNRs with ferro- and antiferromagnetic ordering give almost identical values. The edge carbon atoms possess the largest local magnetic moments (0,28) relative to other carbon atoms.

Keywords:
band structure, hexagonal nitride boron, zigzag graphene nanoribbon, magnetic moments, electronic properties.
Text

Введение. С момента открытия в 2004 году уникальные свойства графена являются объектом повышенного внимания исследователей [1, 2]. Высокая подвижность носителей заряда в графене при комнатной температуре определяет широкие перспективы его использования для создания элементов и устройств спинтроники. Энергетической щелью в зонном спектре графена можно управлять, используя различные (диэлектрические [3, 4] и металлические [5]) подложки, графе-новые наноленты [6—8] и электрическое поле [9]. Влияние, например, диэлектрической подложки А12О3(0001), оказываемое на зонный спектр графена, заключается в появлении в окрестности уровня Ферми энергетической щели шириной порядка 55 мэВ [3]. Данный разрыв связан с неэквивалентным расположением атомов алюминия подложки по отношению к атомам углерода.         Графеновые наноленты интересны тем, что обладают нелинейным законом дисперсии для низкоэнергетического спектра п-электронов [7, 8]. Благодаря квантово-размерному эффекту наноленты содержат конечную запрещённую полосу Ед. Её величина зависит от ориентации границ нанолент относительно кристаллической решётки графена. Отличительной особенностью электронного спектра нанолент типа «зигзаг» {zigzag graphene nanoribbon — ZGNR) является наличие локализованных состояний на уровне Ферми, которые обусловлены атомами границ [8]. Наличие локализованных электронных состояний в графеновых нанолентах экспериментально установлено методом фотоэлектронной спектроскопии с угловым разрешением (ARPES) [10, 11].

References

1. Novoselov, К. S., et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, vol. 306, pp. 666-669.

2. Hung Nguyen, V, et al. Resonant tunneling diodes based on grapheme/h-BN heterostructure. Journal of Physics D : Applied Physics, 2012, vol. 45, pp. 325104-1-5.

3. Ilyasov, V V, Ershov, I. V Surface states and adsorption energy of carbon in interface of the two-dimensional grapheme/AI2O3(0001) system. Physics of the Solid State, 2012, vol. 54, no. 11, pp. 2332-2340.

4. Giovanetti, G., et al. Substrate-induced bandgap in grapheme on hexagonal boron nitride. Physical Review В : Condensed Matter, 2007, vol. 76, pp. 073103-073107.

5. Vanin, M., et al. Graphene on metals: A van der Waals density functional study. Physical Review B, 2010, vol. 81, pp. 081408R-l^l·.

6. Jingzhe Chen, et al. Tuning the magnetic moment in zigzag graphene nanorib-bons: Effects of metal substrates. Physical Review, 2012, vol. 86, pp. 075146-1-6.

7. Grichuk, E. S., Manykin, E. A. Transport elektronov i spinov v adiabaticheskom kvantovom na-sose na osnove grafenovykh nanolent. [Electron and spine transport in adiabatic quantum pump on graphene nanoribbons.] Zhurnal eksperimentalnoy i teoreticheskoy fiziki,2011, vol. 140, iss. 4 (10), pp. 801-813 (in Russian).

8. Wakabayashi, K., Dutta, S. Nanoscale and edge effect on electronic properties of grapheme. Solid State Communications, 2012, vol. 152, pp. 1420-1430.

9. Min, H., et al. Ab initio theory of gate induced gaps in graphene bilayers. Physical Review В : Condensed Matter, 2007, vol. 75 (15), pp. 155115-155121.

10. Sugawara, K., et al. Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Physical Review B, 2006, vol. 73, pp. 045124-045128.

11. Usachov, D., et al. Quasifreestranding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Physical Review B, 2010, vol. 82, pp. 075415-1-6.

12. Nakada, K., et al. Edge state in grapheme ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 1996, vol. 54, pp. 17954-17961.

13. Kobayashi, K. Electronic structure of a stepped graphite surface. Physical Review B, 1993, vol. 48, pp. 1757-1760.

14. Fujita, M., et al. Peculiar localized state at zigzag graphite edge. Journal of The Physical Society of Japan, 1996, vol. 65, no. 7, pp. 1920-1923.

15. Chen, J. H., et al. Intrinsic and Extrinsic Performance Limits of Graphene Devices on Si02. Nature Nanotechnology, 2008, vol. 3, pp. 206-209.

16. Lin, Y-M, et al. 100-GHz transistor from wafer-scale epitaxial grapheme. Science, 2010, vol. 327, pp. 662.

17. Ponomarenko, L. A., et al. Effect of a high-k environment on charge carrier mobility in grapheme. Physical Review Letters, 2009, vol. 102, pp. 206603-l^l·.

18. Zomer, P.-J, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Applied Physics Letters, 2011, vol. 99, pp. 232104-232107.

19. Dean, C.-R., et al. Boron nitride substrates for high quality grapheme electronics. Nature Nanotechnology, 2010, vol. 5, pp. 722-726.

20. Guermoune, A., et al. Chemical vapor deposition synthesis of grapheme on copper with methanol, ethanol, and propanol. Carbon, 2011, vol. 49, pp. 4204^210.

21. Giannozzi, P., et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics : Condensed Matter, 2009, vol. 21, pp. 395502-395521.

22. Hohonberg, P., Kohn, W. Inhomogeneous electron gas. Physical Review B, 1964, vol. 136, pp. 864-871.

23. Kohn, W., Sham, L.-J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review A, 1965, vol. 140, pp 1133-1138.

24. Corso, A.-D., Pasquarello, A., Baldereschi, A. Density-functional perturbation theory for lattice dynamics with ultrasoft pseudopotentials. Physical Review B, 1997, vol. 56, pp. Rll 369-372.

25. Yu, S.-S., et al. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, vol. 46, pp. 537-543.

26. Li, Y, et al. Electronic and magnetic properties of zigzag graphene nanorib-bons on the (111) surface of Cu, Ag and Au. Available at : http://arxiv.Org/list/cond-mat.mes-hall/arXiv:1210.2876vl. - 2012. - 10 Oct. (accessed : 11.04.2013).

27. Ilyasov V., et al. Materials for spintronics: magnetic and transport properties of ultrathin (monolayer graphene). MnO(OOl) and MnO(OOl) films. Journal of Modern Physics, 2011, vol. 2, pp.1120-1135.

28. Jiang, D., Sumpter, B.-G., Dai, S. Unique chemical reactivity of a graphene nanoribbon´s zigzag edge. Journal of Chemical Physics, 2007, vol. 126, pp. 134701-134707.

Login or Create
* Forgot password?