Moskva, Moscow, Russian Federation
The article is devoted to the study of the problems and limitations that need to be paid attention to when implementing artificial intelligence (AI) technologies in human resource management systems. The possibilities of using various types of AI in human resource management (generative and conversational AI, deep learning, automation) are presented. The results of national and global studies are summarized and the key problems that arise when expanding the practice of implementing AI technologies in the studied area are highlighted, in particular: difficulties in determining the right balance of automation, employee distrust of AI technologies and difficulties in obtaining new data, the need for significant adaptation of employee skills to ensure complementarity with AI, the need to adjust the organizational culture, control systems and eliminate the negative impact of AI on mental health, the risk of dehumanization of work and the emergence of conflicts between people and AI. It has been shown that as companies move from experimenting with AI technologies to implementing them into core work, the lack of well-thought-out implementation models and insufficient attention to these issues leads to both digital transformation failures and the emergence of new stressors and increased risk of emotional burnout, especially for workers who adapt to AI tools at an accelerated pace.
artificial intelligence, digital transformation, acquisition of new skills, dehumanization, emotional burnout
1. Konovalova V.G. Vnedrenie tehnologiy iskusstvennogo intellekta v sistemy upravleniya personalom i transformaciya klyuchevyh navykov [Tekst] / V.G. Konovalova // Upravlenie personalom i intellektual'nymi resursami v Rossii. — 2023. — № 10. — S. 65–73.
2. Konovalova V.G. Cifrovye tehnologii kak faktor tehnostressa: problemy i vozmozhnosti ih resheniya [Tekst] / V.G. Konovalova // Upravlenie personalom i intellektual'nymi resursami v Rossii. — 2022. — № 3. — S. 17–21. DOI: https://doi.org/10.12737/2305-7807-2022-11-3-17-21; EDN: https://elibrary.ru/GGQXQN
3. 74% of workers blame employers for the AI skills gap // URL: https://getcoai.com/news/74-of-workers-blame-employersfor-the-ai-skills-gap
4. Acikgoz Y., Davison K.H., Compagnone M., and Laske M. (2020). Justice perceptions of artificial intelligence in selection. Int. J. Select. Assess. 28, 399–416. DOI:https://doi.org/10.1111/ijsa.12306 EDN: https://elibrary.ru/HIZGRY
5. AI in the workplace: A report for 2025 // URL: https://www. mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlockais-full-potential-at-work
6. Bankins S., Formosa P., Griep Y., and Richards D. (2022). AI decision making with dignity? Contrasting workers’ justice perceptions of human and AI decision making in a human resource management context. Inf. Syst. Front. 24, 857–875. DOI:https://doi.org/10.1007/s10796-021-10223-8 EDN: https://elibrary.ru/BJDMJE
7. Barrufaldi S., B. van Beuzekom H. Dernis, D. Harhoff, N. Rao, D. Rosenfeld and M. Squicciarini (2020), Identifying and measuring developments in artificial intelligence: Making the impossible possible, OECD Science, Technology and Industry Working Papers, 2020/05.
8. Basu S., Majumdar B., Mukherjee K., Munjal S., and Palaksha C. (2023). Artificial intelligence – HRM interactions and outcomes: a systematic review and causal configurational explanation. Hum. Resour. Manag. Rev. 33:100893. DOI:https://doi.org/10.1016/j. hrmr.2022.100893 DOI: https://doi.org/10.1016/j.hrmr.2022.100893; EDN: https://elibrary.ru/CEDLHT
9. Budhwar P., Chowdhury S., et al. (2023). Human resource management in the age of generative artificial intelligence: perspectives and research directions on ChatGPT. Hum. Resour. Manag. J. 33, 606–659. DOI:https://doi.org/10.1111/1748-8583.12524 EDN: https://elibrary.ru/BRQMDN
10. Chen Z. (2023). Collaboration among recruiters and artificial intelligence: removing human prejudices in employment. Cogn. Tech. Work 25, 135–149. DOI:https://doi.org/10.1007/s10111-02200716-0 DOI: https://doi.org/10.1007/s10111-022-00716-0; EDN: https://elibrary.ru/OSIXJY
11. Czarnitzki D., G.P. Fernández and C. Rammer (2023), Artificial intelligence and firm-level productivity, Journal of Economic Behavior and Organization, 211, 188–205. DOI: https://doi.org/10.1016/j.jebo.2023.05.008; EDN: https://elibrary.ru/VJKKOS
12. Duan Y., Edwards J.S., and Dwivedi Y.K. (2019). Articial intelligence for decision making in the era of big data — evolution, challenges, and research agenda. Int. J. Inf. Manag. 48, 63–71. DOI:https://doi.org/10.1016/j.ijinfomgt.2019.01.021
13. Einola K., and Khoreva V. (2022). Best friend or broken tool? Exploring the co-existence of humans and artificial intelligence in the workplace ecosystem. Hum. Resour. Manag. 62, 117–135. DOI:https://doi.org/10.1002/hrm.22147 EDN: https://elibrary.ru/HRVCMB
14. Employee Experience — Engagement Trends Backed by Research to Help You Prioritize the Employee Experience // URL: https://www.quantumworkplace.com/employee-engagement-trends-report/employee-experience#ai-doesnt-reduceburnout
15. Flipping the Odds of Digital Transformation Success// https:// www.bcg.com/publications/2020/increasing-odds-of-successin-digital-transformation
16. Gélinas, D., Sadreddin, A., and Vahidov, R. (2022). Artificial intelligence in human resources management: a review and research agenda. Pac. Asia J. Assoc. Inform. Syst. 14, 1–42. DOI:https://doi.org/10.17705/1pais.14601
17. Graetz G. and G. Michaels (2018), Robots at Work, The Review of Economics and Statistics, 100(5), 753–768. DOI: https://doi.org/10.1162/rest_a_00754
18. Harney B., and Collings D.G. (2021). Navigating the shifting landscapes of HRM. Hum. Resour. Manag. Rev. 31:100824. DOI:https://doi.org/10.1016/j.hrmr.2021.100824 EDN: https://elibrary.ru/OEKVDF
19. How to use AI tools to boost workplace mental health. URL: https://getcoai.com/news/how-to-use-ai-tools-to-boost-workplace-mental-health Huang M.-H., Rust R., and Maksimovic V. (2019). The feeling economy: managing in the next generation of artificial intelligence (AI). Calif. Manag. Rev. 61, 43–65. DOI:https://doi.org/10.1177/0008125619863436
20. Jakhar D., and Kaur I. (2020). Artifcial intelligence, machine learning and deep learning: defnitions and diferences. Clin. Exp. Dermatol. 45, 131–132. DOI:https://doi.org/10.1111/ced.14029
21. Kim J.Y., and Heo W. (2022). Artificial intelligence video interviewing for employment: perspectives from applicants, companies, developer and academicians. Inf. Technol. People 35, 861–878. DOI:https://doi.org/10.1108/ITP-04-2019-0173 EDN: https://elibrary.ru/HIWGJE
22. Kondapaka P., Khanra S., Malik A., Kagzi M., and Hemachandran K. (2023). Finding a fit between CXO’s experience and AI usage in CXO decision-making: evidence from knowledge-intensive professional service firms. J. Serv. Teory Pract. 33, 280–308. DOI:https://doi.org/10.1108/JSTP-06-2022-0134 EDN: https://elibrary.ru/YNBTMG
23. Maity S. (2019). Identifying opportunities for artificial intelligence in the evolution of training and development practices. J. Manag. Dev. 38, 651–663. DOI:https://doi.org/10.1108/JMD-03-20190069
24. Mettler T., and Wulf J. (2019). Physiolytics at the workplace: affordances and constraints of wearables use from an employee’s perspective. Inf. Syst. J. 29, 245–273. DOI: 10.1111/ isj.12205 DOI: https://doi.org/10.1111/isj.12205
25. Pereira V., Hadjielias E., Christofi M., and Vrontis D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: a multi-process perspective. Hum. Resour. Manag. Rev. 33:100857. DOI:https://doi.org/10.1016/j. hrmr.2021.100857 DOI: https://doi.org/10.1016/j.hrmr.2021.100857; EDN: https://elibrary.ru/AWGDWY
26. Perspectives on transformation. URL: https://www.mckinsey.com/capabilities/transformation/our-insights/perspectives-ontransformation
27. Soleimani M., Intezari A., and Pauleen D.J. (2022). Mitigating cognitive biases in developing AI-assisted recruitment systems: a knowledge-sharing approach. Int. J. Knowl. Manag. 18, 1–18. DOI:https://doi.org/10.4018/IJKM.290022
28. Sousa M.J., and Rocha Á. (2019). Digital learning: developing skills for digital transformation of organizations. Futur. Gener. Comput. Syst. 91, 327–334. DOI:https://doi.org/10.1016/j.future.2018.08.048
29. Stamate A., Sauvé G., and Denis P. (2021). The rise of the machines and how they impact workers’ psychological health: an empirical study. Human Behav. Emerg. Technol. 3, 942–955. DOI:https://doi.org/10.1002/hbe2.315 EDN: https://elibrary.ru/WHAHSX
30. Top obstacles to AI readiness for HR professionals. URL: https://www.sap.com/documents/2025/01/1283d865-ee7e0010-bca6-c68f7e60039b.html
31. Upwork Study Finds Employee Workloads Rising Despite Increased C-Suite Investment in Artificial Intelligence. URL: https://upwork.gcs-web.com/news-releases/news-release-details/upwork-study-finds-employee-workloads-rising-despiteincreased-c
32. van Esch P., Black J.S., and Ferolie J. (2019). Marketing AI recruitment: the next phase in job application and selection. Comput. Hum. Behav. 90, 215–222. DOI:https://doi.org/10.1016/j. chb.2018.09.009
33. Vrontis D., Christofi M., Pereira V., Tarba S., Makrides A., and Trichina E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. Int. J. Hum. Resour. Manag. 33, 1237–1266. DOI:https://doi.org/10.1080/09585192.2020.1871398 EDN: https://elibrary.ru/BNIICS
34. Weiss D., Liu S.X., Mieczkowski H., and Hancock J.T. (2022). Effects of using artificial intelligence on interpersonal perceptions of job applicants. CyberPsychol. Behav. Soc. Netw. 25, 163–168. DOI:https://doi.org/10.1089/cyber.2020.0863 EDN: https://elibrary.ru/FQWQHA
35. Wesche J.S., and Sonderegger A. (2021). Repelled at first sight? Expectations and intentions of job-seekers reading about AI selection in job advertisements. Comput. Hum. Behav. 125:106931. DOI:https://doi.org/10.1016/j.chb.2021.106931 EDN: https://elibrary.ru/KHOOKY



