EFFECT OF SOLAR ACTIVITY AND SOLAR WIND PARAMETERS ON PLASMA TEMPERATURE AND DENSITY IN EARTH’S PLASMASPHERE
Abstract and keywords
Abstract (English):
Measurements from the Interball-1 and Magion-5 satellites of the Interball mission in 1995–2001 have been used to analyze the dependence of the equatorial plasmasphere characteristics on magnetic local time, as well as on solar activity, dynamic pressure, and solar wind density. The proton density at solar minimum is on average higher than at solar maximum, which is probably due to changes in plasma mass composition in the plasmasphere at solar maximum. The daytime and nighttime proton temperatures increase with increasing solar extreme ultraviolet flux, at least in the years of solar maximum. The plasmaspheric plasma density and thermal pressure rise with increasing dynamic pressure and/or density of the undisturbed solar wind, which might be associated with restructuring of the convective electric field in the magnetosphere.

Keywords:
cold plasma, density, temperature, magnetic local time, solar activity, geomagnetic activity, solar wind pressure
Text
Text (PDF): Read Download
References

1. Artemyev A.V., Kotova G.A., Verigin M.I. Role of the field-aligned density distribution for efficiency of electron scattering by hiss waves. “Physics of Auroral Phenomena”. Proc. XXXVII Annual Seminar. Apatity. 2014, pp. 55–58.

2. Bianco S., Haas B., Shprits Y. PINE-RT: An operational real-time plasmasphere model. Front. Astron. Space Sci. 2023, vol. 10, 1116396. DOI:https://doi.org/10.3389/fspas.2023.1116396.

3. Carpenter D.L. Electron-density variations in the magnetosphere deduced from whistler data. J. Geophys. Res. 1962, vol. 67, no. 9, pp. 3345–3360. DOI:https://doi.org/10.1029/JZ067i009p03345.

4. Carpenter D.L., Anderson R.R. An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 1992, vol. 97, pp. 1097–1108. DOI:https://doi.org/10.1029/91JA01548.

5. Chen Y., Liu L., Wan W. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J. Geophys. Res. 2011, vol. 116, A04304. DOI:https://doi.org/10.1029/2010JA016301.

6. Chugunin D.V., Kotova G.A., Klimenko M.V., Klimenko V.V. Longitudinal dependence of the H+ concentration distribution in the plasmasphere according to Interball-1 satellite data. Cosmic Res. 2017, vol. 55, no. 6, pp. 457–463. DOI:https://doi.org/10.1134/S001095251706003X.

7. Craven P.D., Gallagher D.L., Comfort R.H. Relative concentration of He+ in the inner magnetosphere as observed by the DE 1 retarding ion mass spectrometer. J. Geophys. Res. 1997, vol. 102, no. A2, pp. 2279–2289. DOI:https://doi.org/10.1029/96JA02176.

8. Denton R.E., Takahashi K., Hartley D.P. Models for plasmasphere and plasmatrough density and average ion mass including dependence on L, MLT, geomagnetic activity, and phase of the solar cycle. Front. Astron. Space Sci. 2025, vol. 11, 1459281. DOI:https://doi.org/10.3389/fspas.2024.1459281.

9. Jakowski N., Hoque M.M. A new electron density model of the plasmasphere for operational applications and services. J. Space Weather Space Clim. 2018, vol. 8, no. A16. DOI:https://doi.org/10.1051/swsc/2018002.

10. Kim E., Kim Y.H., Jee G., Ssessanga N. Reconstruction of plasmaspheric density distributions by applying a tomography technique to Jason-1 plasmaspheric TEC measurements. Radio Sci. 2018, vol. 53, pp. 866–873. DOI:https://doi.org/10.1029/2017RS006527.

11. Kotova G.A., Bezrukikh V.V. The density and temperature distributions of thermal protons in the magnetic equatorial plane of the Earth’s plasmasphere according to the Interball-1 spacecraft data. Geomagnetizm and Aeronomy. 2022, vol. 62, no. 5, pp. 546–554. DOI:https://doi.org/10.1134/S0016793222050061.

12. Kotova G., Bezrukikh V., Verigin M., Smilauer J. New aspects in plasmaspheric ion temperature variations from Interball 2 and Magion 5 measurements. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 2-4, pp. 399–406. DOI:https://doi.org/10.1016/j.jastp.2007.08.054.

13. Kotova G., Bezrukikh V., Verigin M. The effect of the Earth's optical shadow on thermal plasma measurements in the plasmasphere. J. Atmos. Solar-Terr. Phys. 2014, vol. 120, pp. 9–14. DOI:https://doi.org/10.1016/j.jastp.2014.08.013.

14. Kotova G.A., Bezrukikh V.V., Verigin M.I., Lezhen L.A. Temperature and density variations in the dusk and dawn plasmasphere as observed by INTERBALL TAIL in 1999–2000. Adv. Space Res. 2020a, vol. 30, no. 7, pp. 1831–1834. DOI:https://doi.org/10.1016/S0273-1177(02)00458-1.

15. Kotova G.A., Bezrukikh V.V., Verigin M.I., Lezhen L.A., Barabanov N.A. Interball 1/ Alpha 3 cold plasma measurements in the evening plasmasphere: quiet and disturbed magnetic conditions. J. Adv. Space Res. 2002b, vol. 30, iss. 10, pp. 2313–2318. DOI:https://doi.org/10.1016/S0273-1177(02)80256-3.

16. Lee C.-K., Han S.-C., Bilitza D., Seo K-W. Global characteristics of the correlation and time lag between solar and ionospheric parameters in the 27-day period. J. Atmos. Solar-Terr. Phys. 2012, vol. 77, pp. 219–224. DOI:https://doi.org/10.1016/j.jastp.2012.01.010.

17. Lukianova R.Yu. Effect of abrupt changes in the solar wind dynamic pressure on the polar cap convection. Geomagnetism and Aeronomy. 2004, vol. 44, no. 6, pp. 691–702.

18. Lyashenko M.V. Variations of ionospheric plasma parameters during 23 cycle of solar activity decline. VIII Conference of Young Scientists. Section «Physics of Near-Earth Space», BSFP-2005. Proc. 2005, pp. 108–112. (In Russian). URL: http://bsfp.iszf.irk.ru/sites/default/files/school/2005/Lyashenko-108-112.pdf (accessed May 30, 2025).

19. Menk F.W., Ables S.T., Grew R.S., Clilverd M.A., Sandel B.R. The annual and longitudinal variations in plasmaspheric ion density. J. Geophys. Res. 2012, vol. 117, A03215. DOI:https://doi.org/10.1029/2011JA017071.

20. Park C.G., Carpenter D.L., Wiggin D.B. Electron density in the plasmasphere: Whistler data on solar cycle, annual, and diurnal variations. J. Geophys. Res. 1978, vol. 83, no. A7, pp. 3137–3144. DOI:https://doi.org/10.1029/JA083iA07p03137.

21. Rich F.J., Sultan P.J., Burke W.J. The 27-day variations of plasma densities and temperatures in the topside ionosphere. J. Geophys. Res. 2003, vol. 108, no. A7, 1297. DOI:https://doi.org/10.1029/2002JA009731.

22. Richards P.G., Chang T., Comfort R.H. On the causes of the annual variation in the plasmaspheric electron density. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 935–946.

23. Shim J.S., Jee G., Scherliess L. Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. J. Geophys. Res. 2017, vol. 122, pp. 1611–1623. DOI:https://doi.org/10.1002/2016JA023444.

24. Thaller S.A., Wygant J.R., Cattell C.A., Breneman A.W., Tyler E., Tian S., et al. Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere. J. Geophys. Res. 2019, vol. 124, pp. 1726–1737. DOI:https://doi.org/10.1029/2018JA026365.

25. Verigin M.I., Kotova G.A., Bezrukikh V.V., Bogdanov V.V., Kaisin A.V. Ion dift in the Earth’s inner plasmasphere during magnetospheric disturbances and proton temperature dynamics. Geomagnetism and Aeronomy. 2011, vol. 51, no. 1, pp. 39–48. DOI:https://doi.org/10.1134/S0016793211010154.

26. Yasyukevich A.S., Vesnin A.M., Yasyukevich Yu.V., Padokhin F.M. Correlation between total and plasmasphere electron content and indexes of solar and geomagnetic activity. Russian Open Conference on Radio Wave Propagation (RWP). Kazan. Russia. 2019, pp. 87–90. DOI:https://doi.org/10.1109/RWP.2019.8810364

27. URL: https://www.astroleague.org/files/obsclubs/Carrington%20Rotation%20Start%20Dates.pdf (accessed May 30, 2025).

28. URL: https://cdaweb.gsfc.nasa.gov/index.html (accessed May 30, 2025).

Login or Create
* Forgot password?