Abstract and keywords
Abstract (English):
The article reports on the study of the dynamics of the IMF turbulent component from the quiet period on May 7, 2024 to the arrival of an interplanetary shock wave in the second half of May 10, 2024. To achieve the stated goal, 1-minute direct measurements of interplanetary medium parameters on the ACE, DSCOVR, and WIND spacecraft are involved in the analysis. Spectral analysis methods are used to study the evolution of power spectra of fluctuations in IMF modulus and MHD waves in the inertial portion of the SW turbulence spectrum at frequencies ~2.5∙10–4–8.3∙10–3 Hz. The contribution of Alfvén, fast, and slow magnetosonic waves to the observed power spectrum of the IMF modulus measured by each of the three spacecraft is determined, and power spectra of MHD waves of these types are identified. It is shown that the power of the spectra of fluctuations in the IMF modulus and MHD waves increases by more than an order of magnitude as the shock wave approaches the point of its recording on the spacecraft. It is concluded that this is due to the generation of MHD waves by fluxes of energetic storm particles (ESP) — cosmic rays with energies ~1 MeV, observed in the region ahead of the interplanetary shock wave front. Analysis of all measurement data allows for the assumption that a significant increase in low-energy CR fluxes (~1 MeV) and SW turbulence levels may lead to a change in the IMF direction in the region adjacent to the IPS front.

Keywords:
MHD waves, solar wind, interplanetary magnetic field, interplanetary shock
Text
Text (PDF): Read Download
References

1. Berezhko E.G. Instability in a shock wave propagating in a gas with cosmic rays. Pis’ma v Astronomicheskii Zhurnal. 1986, vol. 12, pp. 842–847. (In Russian).

2. Berezhko E.G. Generation of MHD waves in interplanetary plasma by fluxes of solar cosmic rays. Pis’ma v Astronomicheskii Zhurnal. 1990, vol. 16, pp. 1123–1132. (In Russian).

3. Berezhko E.G., Starodubtsev S.A. Nature of the dynamics of the cosmic-ray fluctuation spectrum. Izvestiya Akademii Nauk SSSR. Ser. Fizicheskaya [Bull. Academy of Sciences of USSR. Ser. Physics]. 1988, vol. 52, pp. 2361–2363. (In Russian).

4. Borovsky J.E. A statistical analysis of the fluctuations in the upstream and downstream plasmas of 109 strong‐compression interplanetary shocks at 1 AU. J. Geophys. Res.: Space Phys. 2020, vol. 125, iss. 6, article id. e27518. DOI:https://doi.org/10.1029/2019JA027518.

5. Chalov S.V. Instability of a diffusive shock wave in a plasma with cosmic rays. Pis’ma v Astronomicheskii Zhurnal. 1988, vol. 14, pp. 272–276. (In Russian).

6. Hu Q., Zank G.P., Li G., Ao X. A Power Spectral Analysis of Turbulence Associated with Interplanetary Shock Waves. in AIP Conf. Ser. 1539, Proc. of the Thirteenth International Solar Wind Conf., ed. G. P. Zank et al. 2013. 175, DOI:https://doi.org/10.1063/1.4811016.

7. Jain A., Trivedi R., Jain S., Choudhary R.K. Effects of the super intense geomagnetic storm on 10–11 May, 2024 on total electron content at Bhopal. Adv. Space Res. 2025, vol. 75, iss. 1, pp. 953–965. DOI:https://doi.org/10.1016/j.asr.2024.09.029.

8. Jenkins G.M., Watts D.G. Spectral Analysis and Its Applications. San Francisco, Cambridge, London, Amsterdam, Holden-Day, 1968, 525 p.

9. Kim S., Oh S. Characteristics of interplanetary shock sheath regions in the solar wind inducing the Forbush decreases. J. Korean Astron. Soc. 2024, vol. 57, no. 2, pp. 173–182. DOI:https://doi.org/10.5303/JKAS.2024.57.2.173.

10. Kovalenko V.A.. Solnechy veter [Solar Wind]. Moscow, Nauka Publ., 1983, 272 p. (In Russian).

11. Lazzús J.A., Salfate I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmospheric and Solar–Terr. Phys. 2024, vol. 261, 106304. DOI:https://doi.org/10.1016/j.jastp.2024.106304.

12. Li G., Hu Q., Zank G.P. Upstream turbulence and the particle spectrum at CME-driven shocks. Proc. AIP Conf. “Physics of Collisionless Shocks”. 2005, vol. 781, pp. 233–239. DOI:https://doi.org/10.1063/1.2032702.

13. Luttrell A.H., Richter A.K. Power spectra of low frequency MHD turbulence up- and downstream of interplanetary fast shocks within 1 AU. Ann. Geophys. 1986, vol. 4, pp. 439–446.

14. Luttrell A.H., Richter A.K. Study of MHD fluctuations upstream and downstream of quasiparallel interplanetary shocks. J. Geophys. Res. 1987, vol. 92, pp. 2243–2252.

15. Neugebauer M., Wu C.S., Huba J.D. Plasma fluctuations in the solar wind. J. Geophys. Res. 1978, vol. 83, pp. 1027–1034.

16. Otnes R., Enokson L. Prikladnoi analiz vremennykh ryadov. Osnovnye metody. [Applied Time Series Analysis. Vol. 1. Basic Techniques.] Moscow, Mir Publ., 1982, 430 p. (In Russian).

17. Pitna A., Safrankova J., Nemecek Z., Durovcova T., Kis A. Turbulence upstream and downstream of interplanetary shocks. Front. Phys. 2021, Frontiers in Physics. 2021, vol. 8, id. 654. DOI:https://doi.org/10.3389/fphy.2020.626768.

18. Ram T., Veenadhari S., Dimri B., et al. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather. 2024, vol. 22, iss. 12, e2024SW004126. DOI:https://doi.org/10.1029/2024SW004126.

19. Reames D.V. Wave generation in the transport of particles from large solar flares. Astrophys. J. Lett. 1989, vol. 342, no. 1, Part 2, pp. L51–L53.

20. Sapunova O.V., Borodkova N.L., Yermolaev Yu.I., Zastenker G.N. Spectra of fluctuations of solar wind plasma parameters near a shock wave. Cosmic Res. 2024, vol. 62, iss. 1, pp. 1–9. DOI:https://doi.org/10.1134/S0010952523700843.

21. Smith C.W., Vasquez B.J. Driving and dissipation of solar-wind turbulence: What is the evidence? Front. Astron. Space Sci. 2021, vol. 7, id. 114. DOI:https://doi.org/10.3389/fspas.2020.611909.

22. Smith C.W., Vasquez B.J. The unsolved problem of solar-wind turbulence. Front. Astron. Space Sci. 2024, vol. 11, id. 1371058. DOI:https://doi.org/10.3389/fspas.2024.1371058.

23. Starodubtsev S.A., Shadrina L.P. MHD waves at the pre-front of interplanetary shocks on September 6 and 7, 2017. Sol.-Terr. Phys. 2024, vol. 10, iss. 3, pp. 50–57. DOI:https://doi.org/10.12737/stp-103202406.

24. Starodubtsev S.A., Zverev A.S., Gololobov P.Yu., Grigoryev V.G. Cosmic ray fluctuations and MHD waves in the solar wind. Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 73–80. DOI:https://doi.org/10.12737/stp-92202309.

25. Toptygin I.N. Kosmicheskie luchi v mezhplanetnykh magnitnykh polyakh [Cosmic rays in interplanetary magnetic fields]. Moscow, Nauka Publ., 1983, 304 p. (In Russian).

26. Vainio R. On the generation of Alfven waves by solar energetic particles. Astron. Astrophys. 2003, vol. 406, pp. 735–740.

27. URL: https://www.obsebre.es/php/geomagnetisme/vrapides/ssc_2024_p.txt (accessed February 27, 2025).

28. URL: https://www.nmdb.eu (accessed February 27, 2025).

29. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed February 27, 2025).

30. URL: https://www.ysn.ru/ipm (accessed February 27, 2025).

31. URL: https://izw1.caltech.edu/ACE/ASC/level2/index.html (accessed February 27, 2025).

32. URL: https://omniweb.gsfc.nasa.gov/ftpbrowser/wind_minmerge.html (accessed February 27, 2025).

33. URL: https://services.swpc.noaa.gov/json/rtsw/rtsw_mag_1m.json (accessed February 27, 2025).

34. URL: https://services.swpc.noaa.gov/json/rtsw/rtsw_wind_1m.json (accessed February 27, 2025).

35. URL: https://sscweb.gsfc.nasa.gov/cgi-bin/Locator.cgi (accessed February 27, 2025).

Login or Create
* Forgot password?