Chelyabinsk, Chelyabinsk, Russian Federation
Chelyabinsk, Chelyabinsk, Russian Federation
A geometric surface model is formed taking into account given functional, structural, technological, economic, aesthetic requirements. These requirements are formulated in geometric terms and are expressed in terms of the surface parameters. The surface is modeled either Kinematics manner, or by way of a twodimensional interpolation. In accordance with in accordance with the kinematic method, the surface is formed as a continuous oneparameter many curves that form simulated in the surface. In accordance with the interpolation method, the surface consists of a set of elementary two-dimensional fragments. The article considered cinema optical method based on the use of curves of the second order of change-nests of the eccentricity as the main shaping element. To control the shape of the design surfaces are used for guide ruled surfaces (cilindroidy and conoid). Computer program is compiled, which determines the eccentricity of the forming curves of the second order depending on the boundary conditions. The program allows you to plot curve of the second order, given an arbitrary set of five coplanar points and tangents. When modeling the surface of the passing through a closed circuit, is used the mapping of this contour in four-dimensional space. Such mapping gives more possibilities for control surface shape. It is shown that the kinematics method computer simulation of the surface has technological advantages properties instead of interpolation method.
curve of the second order kinematics method of modeling the surface, the guide curve forming a curve, the frame surface is four-dimensional space.
1. Bolotov V.P. Geometricheskij i programmnyj kompleks interaktivnogo graficheskogo programmirovanija v SAPR. Doct. Diss. [Geometric and program complex interactive graphical programming in CAD. Doct. Diss.]. Vladivostok, Izd-vo DVGU Publ., 1993. 234 p.
2. Bubennikov A.V. Nachertatel´naja geometrija [Descriptive geometry]. Moscow, Vysshaja shkola Publ., 1985. 288 p.
3. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie. Teorija, praktika, avtomatizacija [Constructive geometric modeling. Theory, practice and automation]. Saarbrucken, Lambert Academic Publishing, 2010. 355 p.
4. Voloshinov D.V. O perspektivah razvitija geometrii i ee instrumentarija [About prospects of development of geometry and its tools]. Geometrija i grafika [Geometry and Graphics]. V. 2, I. 1, pp. 15-21. DOI:https://doi.org/10.12737/3844
5. Vol´berg O.A. Osnovnye idei proektivnoj geometrii [The basic ideas of projective geometry]. Moscow, Leningrad, Gosudarstvennoe uchebno-pedagogicheskoe izd-vo Publ., 1949. 188 p.
6. Geronimus Ja.L. Geometricheskij apparat teorii sinteza ploskih mehanizmov [Geometric theory of synthesis of flat mechanisms]. Moscow, Izd-vo fiziko-matematicheskoj literatury Publ., 1962. 399 p.
7. Glagolev N.A. Proektivnaja geometrija [Projective geometry]. Moscow, Vysshaja shkola Publ., 1963. 344 p.
8. Golovanov N.N. Geometricheskoe modelirovanie [Geometric modeling]. Moscow, Izd-vo fiziko-matematicheskoj literatury Publ., 2012. 472 p.
9. Gorjachevskij V.S. Dvu-dvuznachnoe sootvetstvie v konstruirovanii zamknutyh konturov upravljaemoj formy [TLDdouble-digit according to the design of closed-loop controlled shape]. Geometrija i grafika [Geometry and Graphics]. V. 1, I. 2, pp. 44-46. DOI:https://doi.org/10.12737/788
10. Grjaznov Ja. A. Otsek kanalovoj poverhnosti kak obraz cilindra v rasslojaemom preobrazovanii [Bay canal surface as a cylinder in rastlayamad conversion]. Geometrija i grafika [Geometry and Graphics]. V. 1, I. 1, pp. 17-19. DOI:https://doi.org/10.12737/463
11. Ivanov G.S. Konstruirovanie tehnicheskih poverhnostej [Designing of technical surfaces]. Moscow, Mashinostroenie Publ., 1987. 192 p.
12. Ivanov G.S. Teoreticheskie osnovy nachertatel´noj geometrii [Theoretical foundations of descriptive geometry]. Moscow, Mashinostroenie Publ., 1998. 157 p.
13. Korotkij V.A. Arhitekturnaja obolochka na zamknutom konture [Architectural shell in a closed circuit]. Vestnik JuUrGU. 2015, V. 15, I. 2, pp. 47-51.
14. Korotkij V.A. Geometricheskoe konstruirovanie obolochek sposobom vyhoda v chetyrehmernoe prostranstvo [The geometric design of shells way out in four-dimensional space]. Vestnik JuUrGU. 2014, V. 14, I. 2, pp. 48-51.
15. Korotkij V.A. Geometricheskoe modelirovanie poverhnosti posredstvom ee otobrazhenija na chetyrehmernoe prostranstvo [Geometric modeling the surface by means of its display in four-dimensional space]. Omskij nauchnyj vestnik. 2015, I. 1, pp. 8-12.
16. Korotkij V.A. Komp´juternoe modelirovanie figur chetyrehmernogo prostranstva [Computer modeling of the shapes of four-dimensional space]. Vestnik komp´juternyh i informacionnyh tehnologij. 2014, I. 7, pp. 14-20.
17. Korotkij V.A. Krivye vtorogo porjadka v zadachah formoobrazovanija arhitekturnyh obolochek [Curves of the second order in the tasks of shaping architectural membranes]. Izvestija VUZov. 2014, I. 9-10, pp. 101-107.
18. Korotkij V.A. Nachertatel´naja geometrija [Descriptive geometry]. Cheljabinsk, Izdatel´skij centr JuUrGU Publ., 2013. 183 p.
19. Korotkij V.A. Proektivnoe postroenie koniki [Projective construction of conic bundles]. Cheljabinsk, Izdatel´skij centr JuUrGU Publ., 2010. 94 p.
20. Korotkij V.A. Postroenie krivoj vtorogo porjadka, prohodjashhej cherez dannye tochki i kasajushhihsja dannyh prjamyh [The construction of the conic curve passing through data points and data concerning direct]. Svid. o gosudarstvennoj registracii programmy dlja JeVM №2011611961 ot 04.03.2011.
21. Korotkij V.A. Primenenie krivyh vtorogo porjadka dlja konstruirovanija gladkih karkasno-setchatyh poverhnostej [The use of second-order curves to construct smooth framemesh surfaces]. Vestnik JuUrGU. 2014, V. 14, I. 3, pp. 45-48.
22.
23.
24.
25.
26.
27.
28.
29.
30.