MATHEMATICAL AND COMPUTER MODELLING ELEMENTS OF MECHATRONIC MODULE FOR SCANNING OF PARTS SURFACES
Abstract and keywords
Abstract (English):
Automated machine tools help to increase production efficiency. However, they do not allow to completely exclude defects on the machined surfaces of parts, the occurrence of which is caused by various external factors. In this regard the need to use of using scanning modules for detection of such defects is obvious. In the article the mathematical and computer models of the basic elements are considered, allowing to provide the development of technical solution for creation of mechatronic module for scanning of various objects for the presence of surface defects. The algorithm of computer modelling is presented, mathematical calculations of ball screw transmission and motor power of the mechatronic module are given. These calculations are evaluative and during the design development they should be performed again taking into account the use of specific components and their technical characteristics. A distinctive feature of this module is the scanning subsystem consisting of three scanners. The modular layout of the subsystem allows to use either all three scanners or only one scanner during scanning. The technical characteristics of the scanners required for the defectoscopy of parts surfaces are specified. The article also gives a brief comparative analysis of similar products designed for defectoscopy of various technical objects.

Keywords:
mechatronic module, mathematical modelling, computer modelling, algorithm, sensor, scanner
References

1. Review of existing mechatronic modules [Electronic resource] // : [website]. — URL: https://studbooks.net (date of access: 11/21/2022).

2. Storozhev V. V., Feoktistov N. A. System engineering and mechatronics of technological machines and equipment 2018.

3. Fluke S330 thermal imaging scanner Ircon® ScanIR®/ [Electronic resource] // : [website]. — URL: https://mod-e.ru / (date of access: 01/25/2023).

4. V.M. Tauger Designing mechatronic modules Textbook for students of specialty 220401 — "Mechatronics" Yekaterinburg 2009.

5. Taugher V. M. Fundamentals of the design of mechatronic modules and systems: The training manual. Yekaterinburg: USUPS Publ., 2004. 140 p.

6. Mechatronics: Translated from Japanese. / Isin T., Shimoyama I., Inoue H. and others – M.: Mir, 1988. – 318 p

7. .Electric motors of mechatronic modules/[Electronic Resource]//:[website].URL:https://studfile.net (accessed: 11/19/2023).

8. Description of the composition and principles of operation of automated technological complexes / [Electronic resource] // : [website]. — URL: https://lektsii.org (date of request: 11/19/2023).

9. Composition of the electric motor [Electronic resource]. URL: http://www.tracetransport.ru (Date of request:25.11.23).

10. Goldberg O.D. Sviridenko I.S. Design of electric machines

11. Selection of the main dimensions and calculation of the stator winding [Electronic resource] // : [website]. — URL: https://studopedia.ru (date of access: 12/18/2023).

12. /Determination of the main dimensions of the engine [Electronic resource] // : [website]. — URL: https://studbooks.net (date of request: 18.01.2024).

13. Calculation of the geometric parameters of the ball screw nut [Electronic resource] // : [website]. — URL: https://studbooks.net (date of access: 05/19/2024).

14. Calculation of ball-screw transmission [Electronic resource] // : [website]. — URL: https://studbooks.net (date of access: 11/19/2024).

15. Construction of a mechatronic translational motion module [Electronic resource] // : [website]. — URL: https://studfile.net / (date of access: 11/19/2024).

16. The main criteria for the operability of a ball screw transmission [Electronic resource] // : [website]. — URL: https://studopedia.ru (date of access: 11/20/2024).

17. Mechatronic modules. Purpose, functions and structure of the mechatronic module. The scope of application. Mechatronic modules of automation systems [Electronic resource] // : [website]. — URL: https://helpiks.org (date of access: 11/20/2024).

18. /Review of existing mechatronic modules [Electronic resource] // : [website]. — URL: https://studbooks.net (date of request: 01/21/2025).

19. /Designing a mechatronic module using an asynchronous motor and a ball screw transmission[Electronic resource] // : [website]. — URL: https://nauchniestati.ru (date of access: 01/23/2025).

20. Fluke S330 thermal imaging scanner Ircon® ScanIR®/ [Electronic resource] // : [website]. — URL: https://mod-e.ru / (date of access: 01/25/2024).

21. HC-SR04 Ultrasonic Range Finder [Electronic resource] // : [website]. — URL: https://amperka.ru // (date of access: 01/25/2024).

22. 3D camera LUCIDHelios2 (ToF) [Electronic resource] // : [website]. — URL: https://www.vitec.ru // (date of access: 01/25/2024).

23. OpenCV computer vision: where it is used and how it works[Electronic resource] // : [website]. — URL: https://skillbox.ru // (date of access: 01/25/2024).

24. The mechanism of attachment of the sensor to the body of the in-tube projectile- flaw detector [Electronic resource]// : [website]. — URL: https://fips.ru/iiss/document.xhtml?faces-redirect=true&id=dd916a6d4af1c7cbdbd496ba09a1e9cb RU 2 778 492 C1 (date of access: 21.01.2025).

25. The flaw detector measuring module and its tracking chassis [Electronic resource] // : [website]. — URL: https://fips.ru/iiss/document.xhtml?faces-redirect=true&id=5a9244cf1e816e53af6d8ffaea2f6ba6 RU 2 445 593 C1 (date of access: 21.01.2025).

26. The way of quality management of the decision making software systems development / O.N. Dolinina, V.A. Kushnikov, V.V. Pechenkin, A.F. Rezchikov // Advances in Intelligent Systems and Computing. - 2019. - Vol. 763. - Pp. 90-98. - DOI:https://doi.org/10.1007/978-3-319-91186-1_11.

27. Sukhodolov, A.P. Managing a company on the basis of the internet of things: systemic analysis, information processing, and decision making in the system "machine-human-machine" / A.P. Sukhodolov // Studies in Computational Intelligence. - 2019. - Vol. 826. - Pp. 871-880. - DOI:https://doi.org/10.1007/978-3-030-13397-9_89.

28. The role of paradox theory in decision making and management research / D.A. Waldman, L.L. Putnam, E. Miron-Spektor, D. Siegel // Organizational Behavior and Human Decision Processes. - 2019. - Vol. 155. - Pp. 1-6. - DOI:https://doi.org/10.1016/j.obhdp.2019.04.006.

29. Rizun, N. Method of decision-making logic discovery in the business process textual data / N. Rizun, A. Revina, V. Meister // Lecture Notes in Business Information Processing. - 2019. - Vol. 353. - Pp. 70-84.

30. Sazonova, S.A. Control of load-bearing structures of technological overpasses / S.A. Sazonova, S.D. Nikolenko, A.A. Osipov // IOP Conference Series: Earth and Environmental Science. - 2022. - V. 988(5). - P. 052012. - DOI:https://doi.org/10.1063/5.0093524.

31. Sazonova, S.A. Monitoring concrete road pavement damages / S.A. Sazonova, S.D. Nikolenko, N.V. Akamsina // IOP Conference Series: Earth and Environmental Science. - 2022. - V. 988(5). - P. 052054. - DOI:https://doi.org/10.1088/1755-1315/988/5/052054.

32. Measures based on the results of control of dustiness of workplaces from bulk materials / S.A. Sazonova, S.D. Nikolenko, V.F. Asminin [et al.] // AIP Conference Proceedings. Proceedings of the III International Conference on Advanced Technologies in Materials Science, Mechanical and Automation Engineering. - 2021. - P. 060029. - DOI:https://doi.org/10.1063/5.0072037.

33. Dust control of workplaces from bulk materials / S.A. Sazonova, S.D. Nikolenko, E. Vysotskaya [et al.] // AIP Conference Proceedings. Proceedings of the III International Conference on Advanced Technologies in Materials Science, Mechanical and Automation Engineering. - 2021. - P. 060028. - DOI:https://doi.org/10.1063/5.0072036.

34. Dust cleaning of working areas in the production of granulated foam glass ceramics / S.D. Nikolenko, S.A. Sazonova, V.F. Asminin [et al.] // AIP Conference Pro-ceedings. Proceedings of the III International Conference on Advanced Technologies in Materials Science, Mechanical and Automation Engineering. - 2021. - P. 060030. - DOI:https://doi.org/10.1063/5.0072038.

35. Measures to improve the performance of concrete of rein-forced concrete supports of technological overpasses / S.D. Nikolenko, S.A. Sazonova, N.V. Akamsina [et al.] // IOP Conference Series: Earth and Environmental Science. V International Scientific Conference on Agribusiness, Environmental Engineering and Biotechnologies. - 2021. - P. 052036. - DOI:https://doi.org/10.1088/1755-1315/839/5/052036.

36. Aygün S., Wiegold T., Klinge S. Coupling of the phase field approach to the Armstrong-Frederick model for the simulation of ductile damage under cyclic load // International Journal of Plasticity. —2021. —Vol. 143.

37. Beregovskaya, E.O. Military-economic analysis of the stages of the life cycle of high-tech products / E.O. Beregovskaya, A.I. Shalina, A.S. Krasnikova // Economics of high–tech industries. – 2022. – Vol. 3, No. 1. – pp. 27-38. - DOI:https://doi.org/10.18334/evp.3.1.112260.

38. Bondarenkova, I.V. Integrated product lifecycle management systems: an educational and methodological guide / I.V. Bondarenkova. – St. Petersburg: HSE SPbGUPTD, 2022. – 55 p.

39. Burdin, S. S. Conceptual model of life cycle management of high-tech products of the aviation industry / S. S. Burdin // Economics and entrepreneurship. – 2020. – № 12(125). – Pp. 1300-1305. – DOI:https://doi.org/10.34925/EIP.2021.125.12.263.

40. Golubev, S.S. Problems of development of the control system for the full life cycle of weapons, military and special equipment / S.S. Golubev, G.R. Kukushkina // Economics of High–tech Industries, 2020, No. 4, pp. 183-196, DOI:https://doi.org/10.18334/evp.1.4.111157.

41. Novikov, V.M. Solving the problems of intellectual crew support in terms of reconfiguration in case of failures / V.M. Novikov // Collection of abstracts of the VI International Scientific and Practical Conference "AVIATOR" (February 14-15, 2019). Voronezh, 2019. pp. 189-192.

42. Specialized neurocontroller for hardware decision support / A.M. Solovyov, M.E. Semenov, I.B. Mishchenko, V.M. Novikov // Proceedings of the International Scientific and practical Conference "AVIATOR", February 11-12, 2021 – Voronezh: VUNTS Air Force named after Professor N.E. Zhukovsky and Yu.A. Gagarin, 2021.

43. The concept of building a decision support system when performing dynamic reconfiguration of an aircraft's on-board equipment complex / V.V. Kosyanchuk [et al.] // Theory and technology of radio communications. – 2021. - No. 1. – pp. 5-18.

44. Stepanov A.R., Pavlov P.V., Vladimirov A.P. Hardware and software complex for speckle laser diagnostics of aircraft cabin glazing elements // Proceedings of May 2023, No. 129. DOI:https://doi.org/10.34759/trd-2023-129-23

45. Lebedev A.S., Dobrolyubov A.N., Mikhailenko A.V., Bezrukov A.V. Application of the image recognition system for optical-electronic control of surfaces of product elements // Proceedings of MAY 2020, No. 112. URL: https://trudymai.ru/published.php?ID=11657 DOI:https://doi.org/10.34759/trd-2020-112-018

46. Lebedev A.S., Dobrolyubov A.N., Bezrukov A.V., Yarygin D.M. Increasing the information content of the pollution detection system for elements of rocket and space technology // Proceedings of MAY 2021, No. 118 URL: https://trudymai.ru/published.php?ID=15825 DOI:https://doi.org/10.34759/trd-2021-118-18 4 .

47. Pavlov P.V., Wolf I.E., Evsin A.O., Vladimirov A.P., Stepanov A.R., Khakimov L.N. A method for determining a defect in the glazing of a cabin. Patent RU 2759038. IPC B64F 5/00. Byul. No. 31. 11/19/2021

48. Vladimirov A.P., Drukarenko N.A., Kamantsev I.S., Pavlov P.V., Evsin A.O. Speckle diagnostics of glazing elements of cabins of aircrafts made of organic glass // Aviation Industry. 2021. No. 3-4. pp. 97-103.

49. Goryunov A.E., Pavlov P.V., Petrov N.V. Non-destructive testing of composite materials for the analysis of digital speckle photography parameters // Proceedings of the Military Space Academy named after A.F. Mozhaisky. 2014. No. 64. pp. 132-135.

50. Vladimirov A.P. On speckle tomography of living cell functions // Izvestiya vysshikh uchebnykh zavedeniy. Radiophysics. 2020. Vol. 63. No. 8. pp. 658-671.

51. Serdobintsev Yu.P., Kuhtik M.P. The study of contact stiffness in models of guiding machines by the speckle photography method // Modern science-intensive technologies. 2021. No. 4. pp. 87-93. DOI:https://doi.org/10.17513/snt.38620

52. Usov S.M., Razumovsky I.A., Odintsovo I.N. Investigation of residual stress fields using crack indicators and the method of electronic specklinterferometry // Factory Laboratory. Diagnostics of materials. 2021. Vol. 87. No. 9. pp. 50-58. DOI:https://doi.org/10.26896/1028-6861-2021-87-9-50-58

53. Ivchenko A.V., Safin A.I. Improvement of the process of recording vibrations of turbine impellers using a noise-resistant digital specklinterferometer of panoramic type // Dynamics and vibroacoustics. 2022. Vol. 8. No. 3. pp. 20-30.

54. Savchenko E.A., Velichko E.N. Application of speckle correlation analysis to determine blood flow velocity // Optics and spectroscopy. 2020. Vol. 128. No. 7. pp. 991-997. DOI:https://doi.org/10.21883/OS.2020.07.49572.86-20

55. Pavlov P.V., Lagoshny I.S., Wolf I.E., Stepanov A.R., Evsin A.O., Onoshko A.M. Program module of dynamic speckle interferometry. Certificate of the Russian Federation on registration of a computer program No. 2021669662, 12/01/21.

Login or Create
* Forgot password?