FORMATION OF GIANT MOLECULAR CLOUDS INSIDE HIGH-VELOCITY CLOUDS AND THEIR MANIFESTATIONS IN THE GALAXY AND ITS HALO
Abstract and keywords
Abstract (English):
High-velocity clouds (HVC) with a total mass of ~7∙109 M○, settling into the Galaxy from its corona for ~109 years, can emit galactic fountains (T ~ 106 K). Giant molecular clouds (HMC) can form inside HVC. Crossing the rotating Galaxy ~5 times, HMC can eject fountains of gas (T ~ 105 K), as well as reproduce 5 spiral branches and chains of young stars, promoting star formation at 3 ± 1 M○ year-1. Most of the HMC settles at a distance of 4–8 kpc from the Galactic center, forming young stars whose high luminosity can overestimate the mass of this region (affecting the Galactic rotation curve) by up to 30%. HMC and HVC form shock waves with a size of 0.3 – 1 kpc with a power of ~4∙1041 erg/s, accelerating cosmic rays (CR) to ≤3∙1015 eV. Chains of HVC in the corona of Galaxy, collapsing into HVC complexes in its halo, can accelerate CR to ≤1018 eV; an ensemble of 2.5∙103 HMC can accelerate CR to ≤3∙1019 eV, Magellanic Stream – to ≤1020 eV.

Keywords:
high-velocity clouds, giant molecular clouds, galactic fountains, cosmic rays
Text
Text (PDF): Read Download
References

1. N. Tahir, M. López-Corredoira, F. De Paolis. The baryonic mass estimates of the Milky Way halo in the form of high-velocity clouds // New Astronomy. – 2025. – V. 115. – Art. 102328. DOI: https://doi.org/10.1016/j.newast.2024.102328; EDN: https://elibrary.ru/BMNOSJ

2. S.Yu. Poroykov. Proyavleniya udarnyh voln vokrug galo galaktik – sputnikov i vysokoskorostnyh oblakov v korone Galaktiki // Zhurnal estestvennonauchnyh issledovaniy. – 2025. – T. 10. – № 2. – S. 2-26. EDN: https://elibrary.ru/UWZWHQ

3. A.V. Zemlyakov, M.A. Eremin, I.G. Kovalenko, E.V. Zhukova. O prohozhdenii mezhzvezdnyh oblakov cherez spiral'nyy rukav diskovoy galaktiki // Modelirovanie, informatika i upravlenie. – 2020. – T. 23. – № 2. – S. 41-56. DOI: https://doi.org/10.15688/mpcm.jvolsu.2020.2.4

4. T. Westmeier. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey // Monthly Notices of the Royal Astronomical Society. – 2018. – V. 474. – Is. 1. – P. 289–299. DOI: https://doi.org/10.1093/mnras/stx2757

5. F.J. Lockman, R.A. Benjamin, A.J. Heroux, G.I. Langston. The Smith Cloud: A High-Velocity Cloud Colliding with the Milky Way // The Astrophysical Journal – 2008. – V. 679. – № 1. – L21-L24. DOI: https://doi.org/10.1086/588838

6. P. Richter, B.P. Wakker, B.D. Savage, K.R. Sembach. A Far Ultraviolet Spectroscopic Explorer // The Astrophysical Journal. – 2003. – V. 586. – № 1 – P. 230-248. DOI: https://doi.org/10.1086/346204

7. A.M. Prohorov. Fizicheskaya enciklopediya, t. 3. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1992. – 672 s.

8. T. Ashley, A.J. Fox, F.H. Cashman, et al. Diverse metallicities of Fermi bubble clouds indicate dual origins in the disk and halo // Nature Astronomy. – 2002. – V. 6. – P. 968-975. DOI: https://doi.org/10.1038/s41550-022-01720-0

9. I.S. Grigor'ev, E.Z. Meylihov. Fizicheskie velichiny. Spravochnik. – M.: Energoatomizdat. – 1991. – 1232 s.

10. E. Carretti, R.M. Crocker, et al. Giant magnetized outflows from the centre of the Milky Way // Nature. – 2013. – V. 493. – P. 66-69. DOI: https://doi.org/10.1038/nature11734; EDN: https://elibrary.ru/YDBCJP

11. P. Predehl, R.A. Sunyaev, et al. Detection of large-scale X-ray bubbles in the Milky Way halo // Nature. – 2020. – V. 588. – P. 227–231. DOI: https://doi.org/10.1038/s41586-020-2979-0; EDN: https://elibrary.ru/MIEGSN

12. A.M. Prohorov. Fizicheskaya enciklopediya, t. 2. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 703 s.

13. Y. Stein, R.-J. Dettmar, R. Beck, et al. Transport processes and the X-shaped magnetic field of NGC 4217: off-center superbubble structure // Astronomy and Astrophysics. – 2020. – V. 639. – A111. – 25 rr. DOI: https://doi.org/10.1051/0004-6361/202037675

14. M.E. Putman, J.E.G. Peek, M.R. Joung. Gaseous Galaxy Halos // Review Article. – 2012. – V. 50. – P. 491–529. DOI: https://doi.org/10.1146/annurev-astro-081811-125612

15. Gil de Paz, S. Boissier, B.F. Madore, et al. The GALEX Ultraviolet Atlas of Nearby Galaxies // The Astrophysical Journal Supplement Series. – 2007. – V. 173. – № 2. – P. 185. DOI: https://doi.org/10.1086/516636; EDN: https://elibrary.ru/MJFJIV

16. A.M. Prohorov. Fizicheskaya enciklopediya, t. 4. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1994. – 704 s.

17. A.M. Prohorov. Fizicheskaya enciklopediya, t. 1. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1988. – 704 s.

18. A.V. Zasov, K.A. Postnov. Obschaya astrofizika. 2-e izd. ispr. i dopoln. Fryazino: Vek 2. – 2011. – 576 s. EDN: https://elibrary.ru/QJZICJ

19. A.M. Prohorov. Fizicheskaya enciklopediya, t. 5. M.: Nauchnoe izdatel'stvo «Bol'shaya Rossiyskaya enciklopediya». – 1998. – 784 s.

20. M.E. Putman, L. Staveley-Smith, K.C. Freeman, B.K. Gibson, D.G. Barnes. The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group // The Astrophysical Journal. – 2003. – V. 586. – № 1. – R. 170-194. DOI: https://doi.org/10.1086/344477

21. D. Carollo, et al. Two stellar components in the halo of the Milky Way // Nature. – 2007. – V. 450. – P. 1020–1025. DOI: https://doi.org/10.1038/nature06460

22. A.V. Tutukov, S.V. Vereschagin, M.D. Sizova. Razrushenie galaktik kak prichina poyavleniya zvezdnyh potokov // Astronomicheskiy zhurnal. – 2021. – T. 98. – № 11. – S. 883-900. DOI: https://doi.org/10.31857/S0004629921110074; EDN: https://elibrary.ru/DGAYTF

23. R. Ibata, B. Gibson. The Ghosts of Galaxies Past // Scientific American Magazine. – 2007. – V. 296. – № 4. – P. 40-45. DOI: https://doi.org/10.1038/scientificamerican0407-40

24. Y. Hu, K.H. Yuen, V. Lazarian, et al. Magnetic field morphology in interstellar clouds with the velocity gradient technique // Nature Astronomy. – 2019. – V.3. – P. 776-782. DOI: https://doi.org/10.1038/s41550-019-0769-0; EDN: https://elibrary.ru/UGZLFZ

25. L.G. Hou. The spiral structure in the Solar neighborhood // Frontiers in Astronomy and Space Sciences. – 2021. – V. 8 – № 103. – 23 pp. DOI: https://doi.org/10.3389/fspas.2021.671670

26. E.G. Berezhko, G.F. Krymskiy. Uskorenie kosmicheskih luchey udarnymi volnami // Uspehi fizicheskih nauk. – 1988. – T. 154. – № 1. – S. 49-91. DOI: https://doi.org/10.3367/UFNr.0154.198801b.0049

27. D. Chernyshov, K.-S. Cheng, V. Dogiel, C.-M. Ko. Fermi bubbles as sources of cosmic rays above 1 PeV // EPJ Web of Conferences. – 2017. – 145. – 04004. – 5 pp. DOI: https://doi.org/10.1051/epjconf/201714504004

Login or Create
* Forgot password?