employee from 01.01.2025 to 01.01.2025
Russian Federation
The meta-analysis quantitatively evaluates the technical characteristics (DoF, mass, COT, speed) and control methods (RL, ZMP, MPC) of humanoid robots. Using a random-effects model in RStudio, key metrics were established: a mean COT of 0.79, speed of 1.48 m/s, and a task success rate of 68.14%. The high efficiency of quasi-direct drives and reinforcement learning algorithms was confirmed. A classification of robots for medical, industrial, and domestic applications is proposed. The study systematizes data to optimize design and investment strategies through 2030, highlighting the need to enhance the autonomy and manipulation precision of anthropomorphic systems.
humanoid robots, meta-analysis, energy efficiency, robustness, ethical challenges
1. Tong Y., Liu H., Zhang Z. Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects. IEEE/CAA Journal of Automatica Sinica, 2024, vol. 11, no. 2. DOI:https://doi.org/10.1109/JAS.2023.124140 EDN: https://elibrary.ru/PNNHRS
2. Gu Z., Li J., Shen W., et al. Humanoid Locomotion and Manipulation: Current Progress and Challenges in Control, Planning, and Learning. arXiv preprint, 2025. DOI:https://doi.org/10.48550/arXiv.2501.02116
3. Cao L. AI Robots and Humanoid AI: Review, Perspectives and Directions. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2405.15775
4. Zhang Q., Cui P., Yan D., et al. Whole-body Humanoid Robot Locomotion with Human Reference. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2402.18294
5. Ficht G., Behnke S. Bipedal Humanoid Hardware Design: A Technology Review. arXiv preprint, 2021. DOI:https://doi.org/10.48550/arXiv.2103.04675
6. Kim D., Srouji M., Chen C., Zhang J. ARMOR: Egocentric Perception for Humanoid Robot Collision Avoidance and Motion Planning. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2412.00396
7. Liu H., Xie Q., Zhang Z., et al. PR2: A Physics- and Photo-realistic Testbed for Embodied AI and Humanoid Robots. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2409.01559
8. Duan Y., Zhang Q., Zhou J., et al. E2H: A Two-Stage Non-Invasive Neural Signal Driven Humanoid Robotic Whole-Body Control Framework. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2410.02141
9. Sferrazza C., Huang D.-M., Lin X., Lee Y., Abbeel P. HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation. arXiv preprint, 2024. DOI:https://doi.org/10.48550/arXiv.2403.10506
10. Anonymous. Incremental Learning of Humanoid Robot Behavior from Natural Interaction. Frontiers in Robotics and AI, 2024. DOI:https://doi.org/10.3389/frobt.2024.1455375
11. Chen P.-T., Huang H.-P., Lo J.-H., Chang S.-K. Control Barrier Function-Based Whole-Body Control Framework for Humanoid Robots. International Journal of Humanoid Robotics, 2025. DOI:https://doi.org/10.1142/s0219843625400018 EDN: https://elibrary.ru/EYBBCY
12. Humanoid Robots. U.S.-China Economic and Security Review Commission, 2024. Available at: https://www.uscc.gov/research/humanoid-robots (accessed 1 December 2025).
13. How 2024 Reshaped the Humanoid Robotics Landscape. The Robot Report, 2024. Available at: https://www.therobotreport.com (accessed 1 December 2025).



