INFLUENCE OF CLOUDS ON SPATIAL DISTRIBUTION OF CONDUCTIVITY IN THE ATMOSPHERE
Abstract and keywords
Abstract (English):
In the paper, we examine the atmospheric part of the global electric circuit. When studying large-scale currents in the atmosphere flowing from the ionosphere to the ground, the ionosphere and Earth’s surface can be considered as ideal conductors with high accuracy. These currents are determined by the ground-ionosphere voltage and the spatial distribution of conductivity in the atmosphere. We employ a one-dimensional model of atmospheric electric fields and currents in which currents are assumed to be nearly vertical. Then it is possible to reduce the spatial distribution of conductivity to longitude and latitude distribution of conductivity of atmospheric columns. By integrating the conductivity over the entire Earth surface, we obtain the total conductivity of the atmosphere. Inside clouds, air conductivity decreases due to the ion attachment to water drops. Using available data on decrease in local conductivity within individual clouds, we analyze the effect of cloud density in latitude, longitude, and height on geographical distribution of conductivity and total conductivity of the atmosphere. By the example of 2009, it is shown that cloudiness reduces the total conductivity of the atmosphere by 20 %. Its variations during the day and year are so small that the model fair-weather electric field varies only by 2 % due to cloudiness. Judging by the results obtained, the influence of clouds on atmospheric conductivity does not explain the diurnal and seasonal cycles of the fair-weather electric field strength (Carnegie diagram).

Keywords:
atmospheric currents, electric field, UT variation, global electric circuit
Text
Text (PDF): Read Download
References

1. Ampferer M., Denisenko V.V., Hausleitner W., Krauss S., Stangl G., et al. Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer. Ann. Geophys. 2010, vol. 28, iss. 3, pp. 779–787. DOI:https://doi.org/10.5194/angeo-28-779-2010.

2. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V. Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation. Atmos. Res. 2020, vol. 244, 105035. DOI:https://doi.org/10.1016/j.atmosres.2020.105035.

3. Baumgaertner A.J.G., Lucas G.M., Thayer J.P., Mallios S.A. On the role of clouds in the fair weather part of the global electric circuit.Atmospheric Chemistry and Physics. 2014, vol. 14, iss. 16, pp. 8599–8610. DOI:https://doi.org/10.5194/acp-14-8599-2014.

4. Ccopa J.G.A., Tacza J., Raulin J.-P., Morales C.A. Estimation of thunderstorms occurrence from lightning cluster recorded by WWLLN and its comparison with the ‘universal’ Carnegie curve. J. Atmos. Solar-Terr. Phys. 2021, vol. 221, 105682. DOI:https://doi.org/10.1016/j.jastp.2021.105682.

5. Denisenko V.V. Electric current penetration from a thunderstorm cloud into the middle-latitude ionosphere. Proc. 10th Int. Conf. “Problems of Geocosmos”. Saint Petersburg, 2014a, pp. 76–81. URL: http://geo.phys.spbu.ru/materials_of_a_conference_2014/Geocosmos2014proceedings.pdf (accessed September 30, 2024).

6. Denisenko V.V. Electric current penetration from a thunderstorm cloud into the ionosphere at the geomagnetic equator. 2014b, pp. 82–87. URL: http://geo.phys.spbu.ru/materials_of_a_conference_2014/Geocosmos2014proceedings.pdf (accessed September 30, 2024).

7. Denisenko V.V. Influence of relief on the atmospheric electric field. Sol-Terr. Phys., 2024, vol. 10, iss. 1, pp. 49–53. DOI:https://doi.org/10.12737/stp-101202407.

8. Denisenko V.V., Lyakhov A.N. Comparison of ground-based and satellite data on spatiotemporal distribution of lightning discharges under solar minimum. Sol.-Terr. Phys. 2021, vol. 7, iss. 4, pp. 104–112. DOI:https://doi.org/10.12737/stp-74202112.

9. Denisenko V.V., Nesterov S.A. The ionospheric electric field above an electrified cloud. Proc. VIII International Conference “Atmosphere, ionosphere, safety”. Kaliningrad, 2023, pp. 147–150.

10. Denisenko V.V., Rycroft M.J. Seasonal Dependence of the Equatorial Electrojets Generated by Thunderstorms. Adv. Space Res. 2024, vol. 73, iss. 7, pp. 3464–3471. DOI:https://doi.org/10.1016/j.asr.2023.08.017.

11. Denisenko V.V., Rycroft M.J., Harrison R.G. Mathematical simulation of the ionospheric electric field as a part of the global electric circuit.Surveys Geophys. 2019, vol. 40, iss. 1, pp. 1–35. DOI:https://doi.org/10.1007/s10712-018-9499-6.

12. Denisenko V.V., Rycroft M.J., Harrison R.G. Mathematical model of the global ionospheric electric field generated by thunderstorms. Bulletin Rus. Acad. Sci.: Phys. 2023, vol. 87, iss. 1, pp. 118–123. DOI:https://doi.org/10.3103/S1062873822700277.

13. Golubenko K., Rozanov E., Mironova I., Karagodin A., Usoskin I. Natural sources of ionization and their impact on atmospheric electricity. Geophys. Res. Lett. 2020, vol. 47, e2020GL088619. DOI:https://doi.org/10.1029/2020GL088619.

14. Handbook of Geophysics, United States Air Force. NY, The Macmillan Company. 1960. 571 p.

15. Harrison R.G. The Carnegie Curve.Surveys Geophys. 2013, vol. 34, pp. 209–232. DOI:https://doi.org/10.1007/s10712-012-9210-2.

16. Harrison R.G., Aplin K.L., Rycroft M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Solar-Terr. Phys. 2010, vol. 72, pp. 376–381. DOI:https://doi.org/10.1016/j.jastp.2009.12.004.

17. Harrison R.G., Nicoll K.A., Mareev E., Slyunyaev N., Rycroft M.J. Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage.Proc. of the Royal Society A. 2020, vol. 476, 20190758. DOI:https://doi.org/10.1098/rspa.2019.0758.

18. Hastings D.A., Dunbar P.K., Elphingstone G.M., et al. The Global Land One-Kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, U.S.A. 1999. Digital data base on the World Wide Web. URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html (accessed July 1, 2024).

19. Ilin N.V., Slyunyaev N.N., Mareev E.A. Toward a realistic representation of global electric circuit generators in models of atmospheric dynamics. J. Geophys. Res.: Atmos. 2020, vol. 125, e2019JD032130. DOI:https://doi.org/10.1029/2019JD032130.

20. Jeni Victor N., Frank-Kamenetsky A.V., Manu S., Panneerselvam C. Variation of atmospheric electric field measured at Vostok, Antarctica, during St. Patrick’s Day storms on 24th solar cycle. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 6332–6348. DOI:https://doi.org/10.1002/2017JA024022.

21. Karagodin A., Rozanov E., Mareev E., Mironova I., Volodin E., Golubenko K. The representation of ionospheric potential in the global chemistry-climate model SOCOL. Sci. Total Envir. 2019, vol. 697, 134172. DOI:https://doi.org/10.1016/j.scitotenv.2019.134172.

22. Lavigne T., Liu C., Deierling W., Mach D. Relationship between the global electric circuit and electrified cloud parameters at diurnal, seasonal, and interannual timescales. J. Geophys. Res. Atmos. 2017, vol. 122, pp. 8525–8542. DOI:https://doi.org/10.1002/2016JD026442.

23. Makino M., Ogawa T. Quantitative estimation of global circuit. J. Geophys. Res. 1985, vol. 90, pp. 5961–5966. DOI:https://doi.org/10.1029/JD090iD04p05961.

24. Mareev E.A. Achievements and prospects of the global electric circuit. Physics–Uspekhi. 2010, vol. 53, pp. 504–534. DOI:https://doi.org/10.3367/UFNr.0180.201005h.0527.

25. Markson R. The global circuit intensity: its measurement and variation over the last 50 years. Bull. American Meteorol. Soc. 2007, vol. 88, pp. 223–242. DOI:https://doi.org/10.1175/BAMS-88-2-223.

26. Mauritsen T., Bader J., Becker T., Behrens J. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM 1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems. 2019, vol. 11, iss. 4, pp. 998–1038. DOI:https://doi.org/10.1029/2018MS001400.

27. Mezuman K., Price C., Galanti E. On the spatial and temporal distribution of global thunderstorm cells. Environ. Res. Lett. 2014, vol. 9, iss. 12, 124023. DOI:https://doi.org/10.1088/1748-9326/9/12/124023.

28. Molchanov O., Hayakawa M. Seismo-electromagnetics and related phenomena: History and latest results. Tokyo, Terrapub, 2008. 189 p.

29. National Research Council. The Earth’s Electrical Environment. Washington, DC, National Academies Press, 1986. DOI:https://doi.org/10.17226/898.

30. Neubauer D., Ferrachat S., Siegenthaler-Le Drian, et al. The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity.Geoscientific Model Development. 2019, vol. 12, iss. 8, pp. 3609–3639. DOI:https://doi.org/10.5194/gmd-12-3609-2019.

31. Odzimek A., Lester M., Kubicki M. EGATEC: A new high-resolution engineering model of the global atmospheric electric circuit — Currents in the lower atmosphere. J. Geophys. Res. 2010, vol. 115, D18207, DOI:https://doi.org/10.1029/2009JD013341.

32. Pulinets S., Ouzounov D., Karelin A., Boyarchuk K. Earthquake Precursors in the Atmosphere and Ionosphere. New Concepts. Dordrecht. Springer Nature. 2022, 294 p. DOI:https://doi.org/10.1007/978-94-024-2172-9.

33. Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. The electric field of the undisturbed atmosphere in the south of Western Siberia: A case study on Tomsk.Atmosh. 2022, vol. 13, pp. 614–633. DOI:https://doi.org/10.3390/atmos13040614.

34. Rodger C.J., Brundell J.B., Dowden R.L., Thomson N.R. Location accuracy of long distance VLF lightning location network. Ann. Geophys. 2004, vol. 22, pp. 747–758. DOI:https://doi.org/10.5194/angeo-22-747-2004.

35. Rycroft M.J., Odzimek A. Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J. Geophys. Res. 2010, vol. 115, A00E37. DOI:https://doi.org/10.1029/2009JA014758.

36. Rycroft M.J., Odzimek A., Harrison R.G. Determining the time constant of the global atmospheric electric circuit through modelling and observations. J. Atmos. Solar-Terr. Phys. 2024, vol. 260, 106267. DOI:https://doi.org/10.1016/j.jastp.2024.106267.

37. Slyunyaev N.N., Mareev E.A., Kalinin A.V., Zhidkov A.A. Influence of large-scale conductivity inhomogeneities in the atmosphere on the global electric circuit. J. Atmos. Sci. 2014, vol. 71, pp. 4382–4396. DOI:https://doi.org/10.1175/JAS-D-14-0001.1.

38. Stevens B., Giorgetta M.A., Esch M., Mauritsen T., Crueger T., Rast S., Salzmann M., et al. The atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Modeling Earth Syst. 2013, vol. 5, pp. 146–172. DOI:https://doi.org/10.1002/jame.20015.

39. Sukhodolov T., Egorova T., Stenke A., Ball W.T., Brodowsky C., Chiodo G., Feinberg A., et al. Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and valuation.Geoscientific Model Develop. 2021, vol. 14, pp. 5525–5560. DOI:https://doi.org/10.5194/gmd-14-5525-2021.

40. Tinsley B.A., Zhou L. Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. J. Geophys. Res. 2006, vol. 111, D16205. DOI:https://doi.org/10.1029/2005JD006988.

41. Torreson O.W., Parkinson W.C., Gish O.H., Wait G.R.Ocean Atmospheric-Electric Results. Washington, D.C., Carnegie Institution of Washington Publ., 1946, 202 p. URL: https://archive.org/details/oceanatmospheric00carn (accessed May 15, 2025).

42. Zhou L., Tinsley B.A. Global circuit model with clouds. J. Atmos. Sci. 2010, vol. 67, iss. 4, pp. 1143–1156. DOI:https://doi.org/10.1175/2009JAS3208.1.

43. URL: https://en.wikipedia.org/wiki/World_Geodetic_System (accessed October 31, 2025).

44. URL: https://data.marine.copernicus.eu/products (accessed May 27, 2024).

45. URL: https://cpb-eu-w2.wpmucdn.com/blogs.reading.ac.uk/dist/7/201/files/2020/09/CCMI-2022_REF-D1_proposal_20200921.pdf (accessed May 27, 2024).

Login or Create
* Forgot password?