Institute of Solar-Terrestrial Physics SB RAS
Moscow, Russian Federation
Geophysical Center of the Russian Academy of Sciences
Moscow, Russian Federation
We examine magnetic field variations within the frequency range of several millihertz (Pc5-6/Pi3 geomagnetic pulsations) in the near-Earth magnetotail and adjacent flank magnetosheath regions, using data from Cluster satellites for 2016. Dependence of spectral coherence on interval length is analyzed for a satellite pair Cluster-1 and Cluster-4 at different satellite positions relative to the magnetopause. It is shown that absolute coherence and the rate of its decline with increasing time interval length differ for the longitudinal and transverse magnetic field components, as well as for different satellite positions. We also present a case study of a coherent pulsation recorded in the magnetosheath at low solar wind velocity and weak fluctuations in front of the bow shock.
Pc5-6/Pi3 geomagnetic pulsations, magnetotail, magnetopause, magnetosheath, coherence
1. Alexandrova O., Lacombe C., Mangeney A. Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 2008, vol. 26, pp. 3585–3596. DOI:https://doi.org/10.5194/angeo-26-3585-2008.
2. Belenkaya E.S. Reconnection modes for near-radial interplanetary magnetic field. J. Geophys. Res. 1998, vol. 103, pp. 26487–26494. DOI:https://doi.org/10.1029/98JA02270.
3. Cowley S.W.H. Asymmetry effects associated with the x-component of the IMF in a magnetically open magnetosphere. Planet. Space Sci. 1981, vol. 29, iss. 8, pp. 809–818. DOI:https://doi.org/10.1016/0032-0633(81)90071-4.
4. Escoubet C.P., Fehringer M., Goldstein M. The Cluster mission. Ann. Geophys. 2001, vol. 19, pp. 1197–1200. DOI:https://doi.org/10.5194/angeo-19-1197-2001.
5. Escoubet C.P., Masson A., Laakso H., Goldstein M.L. Recent highlights from Cluster, the first 3-D magnetospheric mission. Ann. Geophys. 2015, vol. 33, pp. 1221–1235. DOI:https://doi.org/10.5194/angeo-33-1221-2015.
6. Gutynska O., Šafránková J., Němecěk Z. Correlation length of magnetosheath fluctuations: Cluster statistics. Ann. Geophys. 2008, vol. 26, pp. 2503–2513. DOI:https://doi.org/10.5194/angeo_26_2503_2008.
7. Gutynska O., Šafránková J., Němecěk Z. Correlation properties of magnetosheath magnetic field fluctuations. J. Geophys. Res. 2009, vol. 114, no. A8, A08207. DOI:https://doi.org/10.1029/2009JA014173.
8. Gutynska O., Šimůnek J., Šafránková J., et al.. Multipoint study of magnetosheath magnetic field fluctuations and their relation to the foreshock. J. Geophys. Res. 2012, vol. 117, A04214. DOI:https://doi.org/10.1029/2011JA017240.
9. Huang S.Y., Hadid L.Z., Sahraoui F., et al. On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 2017, vol. 836, L10. DOI:https://doi.org/10.3847/2041-8213/836/1/L10.
10. Kepko L., Spence H.E., Singer H.J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 2002, vol. 29, iss. 8. DOI:https://doi.org/10.1029/2001GL014405.
11. Kim K.-H., Cattell C.A., Lee D.-H., et al. Magnetospheric responses to sudden and quasiperiodic solar wind variations. J. Geophys. Res. 2002. vol. 107, iss. A11, p. 1406. DOI:https://doi.org/10.1029/2002JA009342.
12. Kubyshkina M.V., Semenov V.S., Tsyganenko N.A., et al. Unraveling the role of IMF Bx in driving geomagnetic activity. J. Geophys. Res.: Space Phys. 2023, vol. 128, e2022JA031275. DOI:https://doi.org/10.1029/2022JA031275.
13. Leonovich A.S., Mazur V.A., Kozlov D.A. MHD waves in the geomagnetic tail: A review. Sol.-Terr. Phys. 2015, vol. 1, iss. 1, pp. 4–22. DOI:https://doi.org/10.12737/7168.
14. Nosikova N.S., Yagova N.V., Baddeley L.J., et al. An investigation into the spectral parameters of ultra-low-frequency (ULF) waves in the polar caps and magnetotail. Ann. Geophys. 2022, vol. 40, pp. 151–165. DOI:https://doi.org/10.5194/angeo-40-151-2022.
15. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y. Dynamics of plasma turbulence at Earth’s bow shock and through the magnetosheath. Astrophys. J. 2020, vol. 901, p. 30. DOI:https://doi.org/10.3847/1538-4357/abae00.
16. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y. Role of the variable solar wind in the dynamics of small-scale magnetosheath structures. Frontiers in Astronomy and Space Sciences. 2023, vol. 10. DOI:https://doi.org/10.3389/fspas.2023.1121230.
17. Rakhmanova R., Khokhlachev A., Riazantseva M., et al. Turbulence development behind the bow shock during disturbed and undisturbed solar wind. Sol.-Terr. Phys. 2024, vol. 10, no. 2, pp. 13–25. DOI:https://doi.org/10.12737/stp-102202402.
18. Shevyrev N.N., Zastenker G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks. Planet. Space Sci. 2005, vol. 53, pp. 95–102. DOI:https://doi.org/10.1016/j.pss.2004.09.033.
19. Shevyrev N.N., Zastenker G.N., Nozdrachev M.N., et al. High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: Radial profile and some features. Adv. Space Res. 2003, vol. 31, pp. 1389–1394. DOI:https://doi.org/10.1016/S0273-1177(03)00008-5.
20. Shevyrev N.N., Zastenker G.N., Du J. Statistics of low-frequency variations in solar wind, foreshock and magnetosheath: INTERBALL-1 and CLUSTER data. Planetary Space Sci. 2007, vol. 55, pp. 2330–2335. DOI:https://doi.org/10.1016/j.pss.2007.05.014.
21. Stukov D.A., Yagova N.V. Coherence time scales of magnetic field pulsations in 1–5 mHz range in the magnetotail and night magnetosheath. Proc. Baikal Young Scientists’ International School On Fundamental Physics (BASYS-2024) “Physical Processes in Outer and Near-Earth Space” and XVIII Young Scientists’ Conference “Interaction of Fields and Radiation with Matter”]. Irkutsk, September 1–7, 2024. Institute of Solar-Terrestrial Physics, Irkutsk, 2024, pp. 220–222. (In Russian).
22. Wang G.Q., Zhang T.L., Ge Y.S. Spatial distribution of magnetic fluctuation power with period 40 to 600 s in the magnetosphere observed by THEMIS. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 9281–9293. DOI:https://doi.org/10.1002/2015JA021584.
23. Yagova N.V. Spectral slope of high-latitude geomagnetic disturbances in the frequency range 1–5 mHz. Control parameters inside and outside the magnetosphere. Geomagnetism and Aeronomy. 2015, vol. 55, pp. 32–40. DOI:https://doi.org/10.1134/S0016793215010144.
24. Yagova N.V., Evsina N.S. Geomagnetic pulsations in the 1–4 mHz frequency range (Pc5/Pi3) in the magnetotail. Internal and extramagnetospheric sources. Cosmic Res. 2024, vol. 62, no. 4, pp. 323–329. DOI:https://doi.org/10.1134/S0010952524600355.
25. Yagova N.V., Kozyreva O.V., Nosikova N.S. Geomagnetic pulsations in 1–4 mHz frequency range (Pc5/Pi3) in the magnetotail at different levels of disturbances in the interplanetary medium. Sol.-Terr. Phys. 2022, vol. 8, iss. 3, pp. 76–83. DOI:https://doi.org/10.12737/stp-82202212.
26. Zastenker G.N., Nozdrachev M.N., Němeček Z., et al. Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with Spreiter models and motion of the structures. Planetary Space Sci. 2002, vol. 50, iss. 5-6, pp. 601–612. DOI:https://doi.org/10.1016/S0032-0633(02)00039-9.
27. URL: https://cdaweb.gsfc.nasa.gov/ (accessed March 31, 2025).
28. URL: https://cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi (accessed March 31, 2025).



